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INTRODUCTION

In 1954, H. L. Alder [1] showed that, as a generalization of the Rogers-Ramanujan identities, there exist polynom-
ials G, (x) such that

(1) it (1-x";7 =Y Gr,nx)
= n ’
n,éo,ik'(’mgdzkm n=0 (1=xN1—x2)-(1-x")
and
@) n (1-x"7" =3 Gn (x)x"
n=
n#0,#1(mod 2k+1) n=0 (1=x1=3) (1 -x")

where k is a positive integer and the left-hand side of (1) is the generating function for the number of partitions into
parts & 0, +k (mod 2k + 1), while the left-hand side of (2) is the generating function for the number of partitions in-
to parts £0, +1 (mod 2k + 1). As Alder remarks, when k = 2, identities (1) and (2) reduce to the Rogers-Ramanujan
identities for which G2, (x) =x",

Alder showed that identities similar to (1) and (2) exist for the generating function for the number of partitions
into parts # 0, +(k — r) (mod 2k + 1) for all r with 0 <r < k — 1, so that, for a given modulus 2k + 1, there exist
such identities.

We shall show in this paper that a similar generalization is possible for recursion formulae for the number of un-
restricted or restricted partitions of n. The best known of these is the Euler identity for the number of unrestricted
partitions of n:

B) pin) = 3 (g (- TEL)
J

where the sum extends over all positive integers j for which the arguments of the partition function are non-negative.
Another recursion formula was obtained by Hickerson [2], who showed that gfn), the number of partitions of n in-
to distinct parts, is given by

) gln) = 2 (—=1)ptn — (3 +})),

/‘:—. o

where the sum extends over all integers / for which the arguments of the partition function are non-negative.
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We shall show here that these and other recursion formulas are special cases of the following

Theorem. If we denote the number of partitions of n into parts # 0, +(k — r) (mod 2k +a) by p(0, k—r, 2k
+a;n), thenforO<r<k-1,

(5) pl0 k=1, 2k+ain) = 3 (~1)ip( o~ Bktal 2 tal )
i

2

where the sum extends over all integers / for which the arguments of the partition function are non-negative.

Proof. Using Jacobi’s triple product identity

Ho (7_y2n+2)(7+y2n+1zm+y2n+1z—1) - Z yizzj .

n o
f—
with
y = x(2k+a)/2, 7= —x (2r+a)/2 ,
we obtain
o o {2k +a)j* +(2r+a)j
110 (7 __X(2k+a)n+(2k+al”7 _X(Z‘k+a)n+k+r+a)(7 __X(2k+a)n+k—r) = Z (—7)7/\’ 2
n=i .
j=—.°°
Dividing both sides by
I (71-x°%),
s=1

the left-hand side becomes the generating function for the number of partitions of n into parts £0, +(k — r) (mod
2k +a). Equating coefficients of x”? in the resulting equation yields the theorem.

Corollary 1. Forr=0, we obtain the following recursion formula

10 k: o) = ] (2k +a)j* +aj
6) p'(0, &2k +a;n) = Z(-n/,,(n____%/__az ) )
J

where it shall be understood here and henceforth

J
denotes a sum over all integers for which the arguments of the partition function are non-negative.
Corollary 2. 1fin (6), we let k =2 =1, then p(0,1,3;n) = 0 and

Z(—-I}jp(n—‘gﬁz—ﬂ )= 0
i
or

” 2
pin) = 3 (~1)’ ’p( n-Lt ) .
J#0
which is the Euler identity (3).
Corollary 3. 1t in (6), we let k = 2, a = 1, we obtain a recursion formula for p(0,2,5; n), which by the first
Rogers-Ramanujan identity is equal to the number of partitions of » into parts differing by at least 2, or g,(n).
Therefore we have

(7) g,(n) = Z (-7//',;( n—%—t[- )
/
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Corollary 4. Ifin (5), we let r = k — 4, we obtain

) P10, 2 +ain) = 3 (~1)ip( n - Bhral s Bhal] |
i

Corollary 5. If in (8), we let k =a = 2, we obtain a recursion formula for 5°(0,2,6; n), which is equal to g(n),
the number of partitions of » into odd parts, so that we have

aln) = " (- 1)pln - (32 +j)),
j
which is (4).
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Fededdrdrdedr
(-a/b)(b/-a) = (a/b)(b/a)(—1/b)
((—1/a)/(=1/b))(—1/b)

[Continued from P. 336.]

1]

= —7

if and only if

(—1/a) # (—1/6) = —1.
Therefore,
(2) (—a/b)(b/-a) = ((—1/-a)/(—1/b)).

Also,

(a/-b) = (a/b)(a/~1)

and

(—b/a) = (b/a)(—1/a).
Since fa/~1) = 1, therefore '
(a/~b)(-b/a) = (a/b)(b/a)(—1/a)
((—1/a)/(~1/b))-1/a)

]

= -1
if and only if
(—1/a) # (—=1/b) = 1.
Therefore,
(3) (a/-b)(—b/a) = ((—1/a)/(-1/-b)).
Finally,

(~a/-b) = —(a/b)a/~1)(—1/b)
and

(—b/-a) = —(b/a)b/~1)(—1/a).

[Continued on P. 342.]



