SUMS OF PRODUCTS OF GENERALIZED FIBONACCI NUMBERS

GEORGE BERZSENYI

Lamar University, Beaumont, Texas 77705

The purpose of this note is to announce the following formulae, where H_{0} and H_{1} are chosen arbitrarily and $H_{n}=H_{n-1}+H_{n-2}$ for $n>1$:

$$
\sum_{k=0}^{n} H_{k} H_{k+2 m+1}= \begin{cases}H_{m+n+1}^{2}-H_{m+1}^{2}+H_{0} H_{2 m+1}, & \text { if } n \text { is even } \tag{*}\\ H_{m+n+1}^{2}-H_{m}^{2} & \text { if } n \text { is odd }\end{cases}
$$

$$
\sum_{k=0}^{n} H_{k} H_{k+2 m}= \begin{cases}H_{m+n} H_{m+n+1}-H_{m} H_{m+1}+H_{0} H_{2 m}, & \text { if } n \text { is even } \\ H_{m+n} H_{m+n+1}-H_{m-1} H_{m}, & \text { if } n \text { is odd } .\end{cases}
$$

These results may be established by first proving the corresponding formulas for Fibonacci numbers and then expanding the expressions on the left side of (*) by using the well-known relation

$$
H_{n}=F_{n-1} H_{0}+F_{n} H_{1}
$$

To prove (*) for Fibonacci numbers the method of generating functions is utilized. Using Binet's formulae for Fibonacci and Lucas numbers, one finds that
$\sum_{n=0}^{\infty} F_{n+m}^{2} x^{n}=\frac{F_{m}^{2}+\left[F_{m-1} F_{m}+(-1)^{m}\right] x-F_{m-1}^{2} x^{2}}{(1+x)\left(1-3 x+x^{2}\right)}$ and $\sum_{n=0}^{\infty} F_{n} F_{n+m} x^{n}=\frac{F_{m+1} x-F_{m-1} x^{2}}{(1+x)\left(1-3 x+x^{2}\right)}$.
Moreover,

$$
\sum_{n=0}^{\infty}\left(\sum_{n=0}^{n} F_{k} F_{k+m}\right) x^{n}=\left(\sum_{n=0}^{\infty} x^{n}\right)\left(\sum_{n=0}^{\infty} F_{n} F_{n+m} x^{n}\right)=\frac{F_{m+1} x-F_{m-1} x^{2}}{(1-x)(1+x)\left(1-3 x+x^{2}\right)}
$$

and with the methods of Gould [1] one can derive the bisection generating functions
and

$$
\begin{gathered}
\sum_{n=0}^{\infty} F_{2 n+m}^{2} x^{n}=\frac{F_{m}^{2}+\left[(-1)^{m}-3 F_{m-2} F_{m}\right] x+F_{m-2}^{2} x^{2}}{(1-x)\left(1-7 x+x^{2}\right)}, \\
\sum_{n=0}^{\infty}\left(\sum_{k=0}^{2 n} F_{k} F_{k+m}\right) x^{n}=\frac{F_{m+3} x-F_{m-1} x^{2}}{(1-x)\left(1-7 x+x^{2}\right)}
\end{gathered}
$$

$$
\cdot \sum_{n=0}^{\infty}\left(\sum_{k=0}^{2 n+1} F_{k} F_{k+m}\right) x^{n}=\frac{F_{m+1}-F_{m-3 x}}{(1-x)\left(1-7 x+x^{2}\right)}
$$

The proof of (*) for Fibonacci numbers is then completed by observing the relationships among these generating functions. For example,

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(F_{2 n+m+2}^{2}-F_{m}^{2}\right) x^{n} & =\sum_{n=0}^{\infty} F_{2 n+m+2}^{2} x^{n}-F_{m}^{2} \sum_{n=0}^{\infty} x^{n} \\
& =\frac{F_{m+2}^{2}+\left[(-1)^{m+2}-3 F_{m} F_{m+2}\right] x+F_{m}^{2} x^{2}}{(1-x)\left(1-7 x+x^{2}\right)}-\frac{F_{m}^{2}}{1-x} \\
& =\frac{\left(F_{m+2}^{2}-F_{m}^{2}\right)+\left[(-1)^{m}-3 F_{m} F_{m+2}+7 F_{m}^{2}\right] x}{(1-x)\left(1-7 x+x^{2}\right)} \\
& =\frac{F_{2 m+2}-F_{2 m-2} x}{(1-x)\left(1-7 x+x^{2}\right)} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{2 n+1} F_{k} F_{k+2 m+1}\right) x^{n}
\end{aligned}
$$

and hence,

$$
\sum_{k=0}^{2 n+1} F_{k} F_{k+2 n+1}=F_{2 n+m+2}^{2}-F_{m}^{2}
$$

The other three cases are similar.

REFERENCE

1. V. E. Hoggatt, Jr., and J. C. Anaya, "A Primer for the Fibonacci Numbers: Part XI," The Fibonacci Quarterly, Vol. 11, No. 1 (Feb., 1973), pp. 85-90.

*

[Continued from P. 342.]
Proof. The corollary is known to be true for $(b /-1)=1$. Then the following results can be calculated:
If
then

$$
\left(a_{1} a_{2} /-1\right)=1
$$

$$
\begin{gathered}
\left(a_{1} a_{2} / b\right)=1 \\
\left(-a_{1} a_{2} / b\right)=(-1 / b) \\
\left(a_{1} a_{2} /-b\right)=1 \\
\left(-a_{1} a_{2} /-b\right)=-(-1 / b) ;
\end{gathered}
$$

If $\left(a_{1} a_{2} /-1\right)=-1$, then

$$
\begin{gathered}
\left(a_{1} a_{2} / b\right)=1, \\
\left(-a_{1} a_{2} / b\right)=(-1 / b), \\
\left(a_{1} a_{2} /-b\right)=-1, \\
\left(-a_{1} a_{2} /-b\right)=(-1 / b) .
\end{gathered}
$$

[Continued on P. 349.]

