A RECURSIVE METHOD FOR COUNTING INTEGERS NOT REPRESENTABLE IN CERTAIN EXPANSIONS

J. L. BROWN, JR.

The Pennsylvania State University, University Park, Pennsylvania 16801

1. INTRODUCTION

Let $\left\{ P_{i} \right\}_{i}^{\infty}$ be a sequence of positive integers satisfying the inequality

(1)
$$P_{n+1} \ge 1 + \sum_{i=1}^{n} P_i \text{ for } n \ge 1;$$

then it is well known ([1], Theorem 1; [2], Theorem 2; [3], Theorem 1) that any positive integer N possesses at most one representation as a sum of distinct terms from the sequence $\{P_i\}$. Such representations, when they exist, are thus unique, and we term a sequence $\{P_i\}$ of positive integers satisfying (1) a *sequence of uniqueness*, or briefly a *u-sequence*. Following Hoggatt and Peterson [1], we define M(N) for each positive integer N as the number of positive integers less than N which are not representable as a sum of distinct terms from a given fixed *u*-sequence $\{P_i\}$. The principal result in [1] (Theorem 4) is that if N has a representation

$$N = \sum_{1}^{n} a_{i}P_{i}$$

with $\{a_i\}$ binary coefficients, then

$$M(N) = N - \sum_{1}^{n} a_{i} 2^{i-1} ,$$

so that an explicit formula for M(N) is available for *representable* positive integers. In general, a closed form expression for M(N) as a function of N does not exist; our purpose in the present paper is to derive an expression from which M(N) may be readily calculated for an arbitrary positive integer N.

2. DERIVATION

Throughout the following analysis, $\{P_i\}_{i}^{\infty}$ will denote a fixed *u*-sequence; we wish to find a recursive algorithm for determining M(N).

First, we recall ([1], Theorem 2) that

$$M(P_n) = P_n - 2^{n-1}$$
 for $n \ge 1$,

so that only values of N not coinciding with terms of the u-sequence need be considered.

Theorem 1. Let N be an integer satisfying $P_n < N < P_{n+1}$ for some $n \ge 1$.

(i) If $P_n < N \le \sum_{j=1}^{n} P_j$, then $M(N) = M(P_n) + M(N - P_n)$. (i) **299**

A RECURSIVE METHOD FOR COUNTING INTEGERS

(ii) If
$$\sum_{1}^{n} P_{i} < N < P_{n+1}$$
, then $M(N) = M\left(\sum_{1}^{n} P_{i}\right) + \left(N - \sum_{1}^{n} P_{i}\right) - 1 = N - 2^{n}$

NOTE: Result (i) expresses M(N) in terms of $M(P_n)$ and $M(N - P_n)$. But $N - P_n < P_n$ in case (i) since

$$P_n < N \leq \sum_{j=1}^n P_j$$
 implies $0 < N - P_n \leq \sum_{j=1}^{n-1} P_j < P_n$,

the latter inequality following from the fact that $\{P_i\}$ is a *u*-sequence. Thus, if we consider the values M(1), M(2), \dots , $M(P_n)$ as known, then M(N) is determined from (i) whenever

$$P_n < N \leq \sum_{1}^{n} P_i,$$

while M(N) is given explicitly by (ii) for the remaining values of N in (P_n, P_{n+1}) . *Proof.* Let N satisfy

$$P_n < N \leq \sum_{j=1}^{n} P_j.$$

Then M(N) is equal to $M(P_n)$ plus the number of non-representable integers in the interval (P_n, N) . But any integer K in (P_n, N) which is representable must have P_n in its representation (noting

$$\sum_{1}^{n-1} P_i < P_n \rangle,$$

and since $K = P_n + (K - P_n)$, we see $K - P_n$ must also be representable. Conversely if $K - P_n$ (which is less than P_n) is representable in terms of P_1, \dots, P_{n-1} , then K is clearly representable. Thus the number of non-representable integers in (P_n, N) is equal to the number of non-representable integers less than $N - P_n$, or $M(N - P_n)$. Hence

$$M(N) = M(P_n) + M(N - P_n),$$

establishing (i).

For N satisfying

$$\sum_{i=1}^{n} P_i < N < P_{n+1},$$

it is obvious that N is not representable. Moreover

$$M\left(\sum_{1}^{n} P_{i}+1\right) = M\left(\sum_{1}^{n} P_{i}\right), \qquad M\left(\sum_{1}^{n} P_{i}+2\right) = M\left(\sum_{1}^{n} P_{i}\right)+1$$

(assuming the arguments of the left-hand terms are $< P_{n+1}$) and in general (adding 1 to M(N) each time N is increased by 1),

$$M(N) = M\left[\sum_{1}^{n} P_{i} \neq \left(N - \sum_{1}^{n} P_{i}\right)\right] = M\left(\sum_{1}^{n} P_{i}\right) \neq \left(N - \sum_{1}^{n} P_{i}\right) - 1,$$

which is the first form of (ii). From Theorem 3 of [1],

[DEC.

Then

$$M\left(\sum_{i=1}^{n} P_{i}\right) = \sum_{i=1}^{n} M(P_{i}) = \sum_{i=1}^{n} \left(P_{i} - 2^{i-1}\right) = \sum_{i=1}^{n} P_{i} - \sum_{i=1}^{n} 2^{i-1} = \sum_{i=1}^{n} P_{i} - (2^{n} - 1).$$
$$M(N) = M\left(\sum_{i=1}^{n} P_{i}\right) + \left(N - \sum_{i=1}^{n} P_{i}\right) - 1 = \sum_{i=1}^{n} P_{i} - (2^{n} - 1) + \left(N - \sum_{i=1}^{n} P_{i}\right) - 1 = N - 2^{n}$$

as asserted.

Corollary 1. (Cf. [1], Theorem 4): If

$$N = \sum_{i=1}^{n} a_i P_i$$
, then $M(N) = \sum_{i=1}^{n} a_i M(P_i) = N - \sum_{i=1}^{n} a_i 2^{i-1}$.

Proof. Let

$$N = \sum_{1}^{n} a_{i}P_{i}$$

with $a_n = 1$. Then

$$P_n \leq N \leq \sum_{1}^{n} P_i \, ,$$

so that by (i) of Theorem 1, we have

$$M(N) = M(P_n) + M(N - P_n) = M(P_n) + M\left(\sum_{i=1}^{K} a_i P_i\right),$$

where $a_{K} = 1$ and K < n (note K is simply the largest value of *i* less than *n* for which $a_{i} \neq 0$). Since

$$P_{K} \leqslant \sum_{1}^{K} a_{i}P_{i} \leqslant \sum_{1}^{K} P_{i},$$

result (i) may be applied again and it is clear that successive iteration leads to

$$M(N) = \sum_{1}^{n} a_{i}M(P_{i}).$$

Using $M(P_i) = P_i - 2^{i-1}$, we have equivalently

$$M(N) = \sum_{1}^{n} a_{i}(P_{i} - 2^{i-1}) = \sum_{1}^{n} a_{i}2^{i-1} = N - \sum_{1}^{n} a_{i}2^{i-1}$$

as required.

Corollary 2. (Cf. [1], Theorem 3):

$$\mathcal{M}\left(\sum_{i=1}^{n} P_{i}\right) = \sum_{i=1}^{n} \mathcal{M}(P_{i}).$$

Proof. Immediate from Corollary 1 on taking all $a_i = 1$ for $i = 1, \dots, n$.

3. EXAMPLE

Let $P_1 = 1$, $P_2 = 10$, $P_3 = 12$, $P_4 = 30$, $P_5 = 75$, ... be the first 5 terms of a sequence which satisfies

A RECURSIVE METHOD FOR COUNTING INTEGERS NOT REPRESENTABLE IN CERTAIN EXPANSIONS

		n	
P _{n+1}	≥	$1 + \sum P_i$	
		1	

for all $n \ge 1$. Then, by direct enumeration

$M(1) = 0 = 1 - 2^{\circ}$	M(13) = 8
M(2) = 0	M(14) = 8
M(3) = 1	M(15) = 9
M(4) = 2	M(16) = 10
M(5) = 3	M(17) = 11
M(6) = 4	M(18) = 12
M(7) = 5	M(19) = 13
M(8) = 6	M(20) = 14
M(9) = 7	M(21) = 15
$M(10) = 8 = 10 - 2^1$	M(22) = 16
M(11) = 8	M(23) = 16
$M(12) = 8 = 12 - 2^2$	M(24) = 16
	M(25) = 17
	M(26) = 18
	M(27) = 19
	M(28) = 20
	M(29) = 21
	$M(30) = 22 = 30 - 2^3$

Now, note that all the values in the right-hand column may be calculated from those in the left-hand column; that is, if 12 < N < 30, then we may apply Theorem 1 to see that

$$12 < N \leq 1 + 10 + 12 = 23 \rightarrow M(N) = M(12) + M(N - 12)$$

23 < N < 30 $\rightarrow M(N) = N - 2^{3}$

Thus, for example, N = 21 is not representable but M(21) = M(12) + M(9) = 8 + 7 = 15, where we have assumed the values M(1) through M(12) are known. Similarly N = 27 is not representable but > 23, so $M(27) = 27 - 2^3 = 19$. Then, knowing M(1) through M(30), we may use Theorem 1 again to calculate M(31) through M(74). Note that for case (i) of Theorem 1, only one addition is needed, since $N - P_n$ always $< P_n$ in this case, while for case (ii), the result for M(N) is explicitly given by $N - 2^n$.

4. CONCLUSION

A recursive scheme has been derived for calculating M(N), the number of integers less than N not representable as a sum of distinct terms from a fixed *u*-sequence $\{P_i\}_{i=1}^{\infty}$. This approach has the advantage of not requiring any prior information concerning which positive integers are representable; however, if a representation for N is known, the result of Hoggatt and Peterson provides an explicit formula for M(N), while in at least some of the remaining cases [(ii) of Theorem 1] an explicit formula is obtained from Theorem 1 of this paper. Other values of M(N) for nonrepresentable N are easily calculated via the recursion relation (i) of Theorem 1. In addition, Theorem 1 provides alternative somewhat simpler deviations of Theorems 3 and 4 in [1].

REFERENCES

- V. E. Hoggatt, Jr., and B. Peterson, "Some General Results on Representations," *The Fibonacci Quarterly*, Vol. 10, No. 1 (Jan. 1972), pp. 81–88.
- J. L. Brown, Jr., "Generalized Bases for the Integers," Amer. Math. Monthly, Vol. 71, No. 9 (Nov. 1964), pp. 973-980.
- 3. G. Lord, "Counting Omitted Values," The Fibonacci Quarterly, Vol. 11, No. 4 (Nov. 1973), pp. 443-448.

DEC. 1975