A RECURSIVE METHOD FOR COUNTING INTEGERS NOT REPRESENTABLE IN CERTAIN EXPANSIONS

J. L. BROWN, JR.
The Pennsylvania State University, University Park, Pennsylvania 16801

1. INTRODUCTION

Let $\left\{P_{i}\right\}_{1}^{\infty}$ be a sequence of positive integers satisfying the inequality

$$
\begin{equation*}
P_{n+1} \geqslant 1+\sum_{1}^{n} P_{i} \quad \text { for } \quad n \geqslant 1 ; \tag{1}
\end{equation*}
$$

then it is well known ([1], Theorem 1; [2], Theorem 2; [3], Theorem 1) that any positive integer N possesses at most one representation as a sum of distinct terms from the sequence $\left\{P_{i}\right\}$. Such representations, when they exist, are thus unique, and we term a sequence $\left\{P_{i}\right\}$ of positive integers satisfying (1) a sequence of uniqueness, or briefly a u-sequence. Following Hoggatt and Peterson [1], we define $M(N)$ for each positive integer N as the number of positive integers less than N which are not representable as a sum of distinct terms from a given fixed u-sequence $\left\{P_{i}\right\}$. The principal result in [1] (Theorem 4) is that if N has a representation

$$
N=\sum_{1}^{n} a_{i} P_{i}
$$

with $\left\{a_{i}\right\}$ binary coefficients, then

$$
M(N)=N-\sum_{1}^{n} a_{i} 2^{i-1}
$$

so that an explicit formula for $M(N)$ is available for representable positive integers. In general, a closed form expression for $M(N)$ as a function of N does not exist; our purpose in the present paper is to derive an expression from which $M(N)$ may be readily calculated for an arbitrary positive integer N.

2. DERIVATION

Throughout the following analysis, $\left\{P_{i}\right\}_{1}^{\infty}$ will denote a fixed u-sequence; we wish to find a recursive algorithm for determining $M(N)$.
First, we recall ([1], Theorem 2) that

$$
M\left(P_{n}\right)=P_{n}-2^{n-1} \quad \text { for } \quad n \geqslant 1
$$

so that only values of N not coinciding with terms of the u-sequence need be considered.
Theorem 1. Let N be an integer satisfying $P_{n}<N<P_{n+1}$ for some $n \geqslant 1$.

$$
\begin{equation*}
\text { If } \quad P_{n}<N \leqslant \sum_{1}^{n} \rho_{i}, \quad \text { then } M(N)=M\left(P_{n}\right)+M\left(N-P_{n}\right) \text {. } \tag{i}
\end{equation*}
$$

(ii)

$$
\text { If } \sum_{1}^{n} P_{i}<N<P_{n+1} \text {, then } M(N)=M\left(\sum_{1}^{n} P_{i}\right)+\left(N-\sum_{1}^{n} P_{i}\right)-1=N-2^{n}
$$

NOTE: Result (i) expresses $M(N)$ in terms of $M\left(P_{n}\right)$ and $M\left(N-P_{n}\right)$. But $N-P_{n}<P_{n}$ in case (i) since

$$
P_{n}<N \leqslant \sum_{1}^{n} P_{i} \quad \text { implies } \quad 0<N-P_{n} \leqslant \sum_{1}^{n-1} P_{i}<P_{n}
$$

the latter inequality following from the fact that $\left\{P_{i}\right\}$ is a u-sequence. Thus, if we consider the values $M(1), M(2)$, $\cdots, M\left(P_{n}\right)$ as known, then $M(N)$ is determined from (i) whenever

$$
P_{n}<N \leqslant \sum_{1}^{n} P_{i}
$$

while $M(N)$ is given explicitly by (ii) for the remaining values of N in $\left(P_{n}, P_{n+1}\right)$.
Proof. Let N satisfy

$$
P_{n}<N \leqslant \sum_{1}^{n} P_{i} .
$$

Then $M(N)$ is equal to $M\left(P_{n}\right)$ plus the number of non-representable integers in the interval $\left(P_{n}, N\right)$. But any integer K in $\left(P_{n}, N\right)$ which is representable must have P_{n} in its representation (noting

$$
\left.\sum_{1}^{n-1} P_{i}<P_{n}\right)
$$

and since $K=P_{n}+\left(K-P_{n}\right)$, we see $K-P_{n}$ must also be representable. Conversely if $K-P_{n}$ (which is less than P_{n}) is representable in terms of P_{1}, \cdots, P_{n-1}, then K is clearly representable. Thus the number of non-representable integers in $\left(P_{n}, N\right)$ is equal to the number of non-representable integers less than $N-P_{n}$, or $M\left(N-P_{n}\right)$. Hence

$$
M(N)=M\left(P_{n}\right)+M\left(N-P_{n}\right),
$$

establishing (i).
For N satisfying

$$
\sum_{1}^{n} P_{i}<N<P_{n+1}
$$

it is obvious that N is not representable. Moreover

$$
M\left(\sum_{1}^{n} p_{i}+1\right)=M\left(\sum_{1}^{n} p_{i}\right), \quad M\left(\sum_{1}^{n} p_{i}+2\right)=M\left(\sum_{1}^{n} p_{i}\right)+1
$$

(assuming the arguments of the left-hand terms are $<P_{n+1}$) and in general (adding 1 to $M(N)$ each time N is increased by 1),

$$
M(N)=M\left[\sum_{1}^{n} P_{i}+\left(N-\sum_{1}^{n} P_{i}\right)\right]=M\left(\sum_{1}^{n} P_{i}\right)+\left(N-\sum_{1}^{n} P_{i}\right)-1
$$

which is the first form of (ii). From Theorem 3 of [1],

Then

$$
M\left(\sum_{1}^{n} P_{i}\right)=\sum_{1}^{n} M\left(P_{i}\right)=\sum_{1}^{n}\left(p_{i}-2^{i-1}\right)=\sum_{1}^{n} p_{i}-\sum_{1}^{n} 2^{i-1}=\sum_{1}^{n} p_{i}-\left(2^{n}-1\right)
$$

en

$$
M(N)=M\left(\sum_{1}^{n} P_{i}\right)+\left(N-\sum_{1}^{n} P_{i}\right)-1=\sum_{1}^{n} P_{i}-\left(2^{n}-1\right)+\left(N-\sum_{1}^{n} P_{i}\right)-1=N-2^{n}
$$

as asserted.
Corollary 1. (Cf. [1], Theorem 4): If

$$
N=\sum_{1}^{n} a_{i} P_{i}, \quad \text { then } \quad M(N)=\sum_{1}^{n} a_{i} M\left(P_{i}\right)=N-\sum_{1}^{n} a_{i} 2^{i-1}
$$

Proof. Let

$$
N=\sum_{1}^{n} a_{i} P_{i}
$$

with $a_{n}=1$. Then

$$
P_{n} \leqslant N \leqslant \sum_{1}^{n} P_{i}
$$

so that by (i) of Theorem 1, we have

$$
M(N)=M\left(P_{n}\right)+M\left(N-P_{n}\right)=M\left(P_{n}\right)+M\left(\sum_{1}^{K} a_{i} P_{i}\right)
$$

where $a_{K}=1$ and $K<n$ (note K is simply the largest value of i less than n for which $a_{i} \neq 0$). Since

$$
P_{K} \leqslant \sum_{1}^{K} a_{i} P_{i} \leqslant \sum_{1}^{K} P_{i}
$$

result (i) may be applied again and it is clear that successive iteration leads to

$$
M(N)=\sum_{1}^{n} a_{i} M\left(P_{i}\right)
$$

Using $M\left(P_{i}\right)=P_{i}-2^{i-1}$, we have equivalently

$$
M(N)=\sum_{1}^{n} a_{i}\left(P_{i}-2^{i-1}\right)=\sum_{1}^{n} a_{i} 2^{i-1}=N-\sum_{1}^{n} a_{i} 2^{i-1}
$$

as required.
Corollary 2. (Cf. [1], Theorem 3):

$$
M\left(\sum_{1}^{n} P_{i}\right)=\sum_{1}^{n} M\left(P_{i}\right)
$$

Proof. Immediate from Corollary 1 on taking all $a_{i}=1$ for $i=1, \cdots, n$.

3. EXAMPLE

Let $P_{1}=1, P_{2}=10, P_{3}=12, P_{4}=30, P_{5}=75, \cdots$ be the first 5 terms of a sequence which satisfies
for all $n \geqslant 1$. Then, by direct enumeration

$$
P_{n+1} \geqslant 1+\sum_{1}^{n} P_{i}
$$

$$
\begin{array}{ll}
M(1)=0=1-2^{0} & M(13)=8 \\
M(2)=0 & M(14)=8 \\
M(3)=1 & M(15)=9 \\
M(4)=2 & M(16)=10 \\
M(5)=3 & M(17)=11 \\
M(6)=4 & M(18)=12 \\
M(7)=5 & M(19)=13 \\
M(8)=6 & M(20)=14 \\
M(9)=7 & M(21)=15 \\
M(10)=8=10-2^{1} & M(22)=16 \\
M(11)=8 & M(23)=16 \\
M(12)=8=12-2^{2} & M(24)=16 \\
& M(25)=17 \\
& M(26)=18 \\
& M(27)=19 \\
& M(28)=20 \\
& M(29)=21 \\
& M(30)=22=30-2^{3}
\end{array}
$$

Now, note that all the values in the right-hand column may be calculated from those in the left-hand column; that is, if $12<N<30$, then we may apply Theorem 1 to see that

$$
\begin{aligned}
12<N \leqslant 1+10+12=23 & \rightarrow M(N)=M(12)+M(N-12) \\
23<N<30 \rightarrow M(N) & =N-2^{3}
\end{aligned}
$$

Thus, for example, $N=21$ is not representable but $M(21)=M(12)+M(9)=8+7=15$, where we have assumed the values $M(1)$ through $M(12)$ are known. Similarly $N=27$ is not representable but >23, so $M(27)=27-2^{3}=19$. Then, knowing $M(1)$ through $M(30)$, we may use Theorem 1 again to calculate $M(31)$ through $M(74)$. Note that for case (i) of Theorem 1, only one addition is needed, since $N-P_{n}$ always $<P_{n}$ in this case, while for case (ii), the result for $M(N)$ is explicitly given by $N-2^{n}$.

4. CONCLUSION

A recursive scheme has been derived for calculating $M(N)$, the number of integers less than N not representable as a sum of distinct terms from a fixed u-sequence $\left\{P_{i}\right\}_{1}^{\infty}$. This approach has the advantage of not requiring any prior information concerning which positive integers are representable; however, if a representation for N is known, the result of Hoggatt and Peterson provides an explicit formula for $M(N)$, while in at least some of the remaining cases [(ii) of Theorem 1] an explicit formula is obtained from Theorem 1 of this paper. Other values of $M(N)$ for nonrepresentable N are easily calculated via the recursion relation (i) of Theorem 1 . In addition, Theorem 1 provides alternative somewhat simpler deviations of Theorems 3 and 4 in [1].

REFERENCES

1. V. E. Hoggatt, Jr., and B. Peterson, "Some General Results on Representations," The Fibonacci Quarterly, Vol. 10, No. 1 (Jan. 1972), pp. 81-88.
2. J. L. Brown, Jr., "Generalized Bases for the Integers," Amer. Math. Monthly, Vol. 71, No. 9 (Nov. 1964), pp. 973-980.
3. G. Lord, "Counting Omitted Values," The Fibonacci Quarterly, Vol. 11, No. 4 (Nov. 1973), pp. 443-448.

*

