A NOTE ON WEIGHTED SEQUENCES

L. CARLITZ* AND RICHARD SCOVILLE
 Duke University, Durham, North Carolina 27706

1. It is well known that the Catalan number

$$
\begin{equation*}
a(n)=\frac{1}{n+1}\binom{2 n}{n} \tag{1.1}
\end{equation*}
$$

satisfies the recurrence

$$
\begin{equation*}
a(n+1)=\sum_{j=0}^{n} a(j) a(n-j) \quad(n=0,1,2, \ldots) \tag{1.2}
\end{equation*}
$$

Conversely if (1.2) is taken as definition together with the initial condition $a(0)=1$ then one can prove (1.1). Thus (1.1) and (1.2) are equivalent definitions.

This suggests as possible q-analogs the following two definitions:
where

$$
\bar{a}(n, q)=\frac{1}{[n+1]}\left[\begin{array}{c}
2 n \tag{1.3}\\
n
\end{array}\right]
$$

$$
[n+1]=\frac{1-q^{n+1}}{1-q}, \quad\left[\begin{array}{c}
2 n \\
n
\end{array}\right]=\frac{\left(1-q^{2 n}\right)\left(1-q^{2 n-1}\right) \cdots\left(1-q^{n+1}\right)}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)} ;
$$

$$
\begin{equation*}
a(n+1, q)=\sum_{j=0}^{n} q^{j} a(j, q) a(n-j, q), \quad a(0, q)=1 \tag{1.4}
\end{equation*}
$$

However (1.3) and (1.4) are not equivalent. Indeed

$$
\begin{aligned}
& a(1, q)=1, \quad a(2, q)=1+q, \quad a(3, q)=(1+q)+q+q^{2}(1+q)=1+2 q+q^{2}+q^{3}, \\
& a(4, q)=\left(1+2 q+q^{2}+q^{3}\right)+q(1+q)+q^{2}(1+q)+q^{3}\left(1+2 q+q^{2}+q^{3}\right) \\
&=1+3 q+3 q^{2}+3 q^{3}+2 q^{4}+q^{5}+q^{6} .
\end{aligned}
$$

On the other hand,

$$
\begin{gathered}
\bar{a}(1, q)=\frac{1}{[2]}\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\frac{1}{1+q} \frac{1-q^{2}}{1-q}=1, \\
\bar{a}(2, q)=\frac{1}{[3]}\left[\begin{array}{l}
4 \\
2
\end{array}\right]=\frac{1}{1+q+q^{2}} \frac{\left(1-q^{4}\right)\left(1-q^{3}\right)}{(1-q)\left(1-q^{2}\right)}=1+q^{2}, \\
\bar{a}(3, q)=\frac{1}{[4]}\left[\begin{array}{l}
6 \\
3
\end{array}\right]=\frac{1}{1+q+q^{2}+q^{3}} \frac{\left(1-q^{6}\right)\left(1-q^{5}\right)\left(1-q^{4}\right)}{(1-q)\left(1-q^{2}\right)\left(1-q^{3}\right)} \\
=1+q^{2}+q^{3}+q^{4}+q^{6}
\end{gathered}, \quad \begin{gathered}
\bar{a}(4, q)=\frac{1}{[5]}\left[\begin{array}{l}
8 \\
4
\end{array}\right]=1+q^{2}+q^{3}+2 q^{4}+q^{5}+2 q^{6}+q^{7}+2 q^{8}+q^{9}+q^{10}+q^{12} .
\end{gathered}
$$

Another well known definition of the Catalan number is the following. Let $f(n, k)$ denote the number of sequences of positive integers $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ such that
(1.5)

$$
1 \leqslant a_{1} \leqslant a_{2} \leqslant \cdots \leqslant a_{n}=k
$$

and
(1.6)

$$
a_{i} \leqslant i \quad(1 \leqslant i \leqslant n)
$$

Then (see for example [1])

$$
f(n, k)=\frac{n-k+1}{n}\binom{n+k-2}{n-1} \quad(1 \leqslant k \leqslant n)
$$

$$
f(n, n-1)=f(n, n)=\frac{1}{n}\binom{2 n-2}{n-1}=a(n-1)
$$

Next define $f(n, k, q)$ by means of [1]

$$
\begin{equation*}
f(n, k, q)=\sum q^{a_{1}+a_{2}+\cdots+a_{n}} \tag{1.7}
\end{equation*}
$$

where the summation is over all sequences $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ satisfying (1.5) and (1.6). It follows from this that the sum

$$
\begin{equation*}
f(n, q)=\sum_{k=1}^{n} f(n, k, q) \tag{1.8}
\end{equation*}
$$

satisfies
(1.9)

$$
f(n, q)=q^{-n} f(n+1, n, q)=q^{-n-1} f(n+1, n+1, q)
$$

Moreover if we put
(1.10)

$$
f(n+1, k+1, q)=q^{(k+1)(n+1)-1 / 2 k(k+1)} b\left(n, k, q^{-1}\right)
$$

then $b(n, k, q)$ satisfies
(1.11)

$$
b(n, k, q)=q^{n-k} b(n, k-1, q)+b(n-1, k, q) .
$$

We shall show that
(1.12)

$$
b(n, n, q)=a(n, q) .
$$

2. Returning to (1.4) we put
(2.1)

$$
A(x, q)=\sum_{n=0}^{\infty} a(n, q) x^{n}
$$

Then

$$
\begin{aligned}
A(x, q) & =1+x \sum_{n=0}^{\infty} x^{n} \sum_{j=0}^{n} q^{j} a(j, q) a(n-j, q) \\
& =1+x \sum_{j=0}^{\infty} a(j, q) q^{j} x^{j} \sum_{n=0}^{\infty} a(n, q) x^{n}
\end{aligned}
$$

so that

(2.2)

$$
A(x, q)=1+x A(x, q) A(q x, q)
$$

This gives

$$
A(x, q)=\frac{1}{1-x A(q x, q)}
$$

which leads to the continued fraction

$$
\begin{equation*}
A(x, q)=\frac{1}{1-\frac{x}{1-} \frac{q x}{1-} \frac{q^{2} x}{1-} \cdots} \tag{2.3}
\end{equation*}
$$

By a known result (see for example [3, p. 293])

$$
\frac{1}{1-\frac{x}{1-} \frac{q x}{1-} \frac{q^{2} x}{1-} \ldots=\frac{\Phi(q x, q)}{\Phi(x, q)}, ~}
$$

where

$$
\begin{equation*}
\Phi(x, q)=\sum_{n=0}^{\infty}(-1)^{n} \frac{q^{n(n-1)_{x} n}}{(q)_{n}} \tag{2.4}
\end{equation*}
$$

and

$$
(q)_{n}=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)
$$

Therefore we get the identity

$$
\begin{equation*}
A(x, q)=\frac{\Phi(q x, q)}{\Phi(x, q)} . \tag{2.5}
\end{equation*}
$$

On the other hand it is proved in $[1,(7.10)]$ that

$$
\begin{equation*}
\sum_{k=0}^{\infty} b(n+k-1, k, q) x^{k}=\frac{\Phi\left(q^{n} x, q\right)}{\Phi(x, q)} \quad(n>0) \tag{2.6}
\end{equation*}
$$

In particular, for $n=1$, Eq. (2.6) reduces to

$$
\begin{equation*}
\sum_{k=0}^{\infty} b(k, k, q)_{x}^{k}=\frac{\Phi(q x, q)}{\Phi(x, q)} \tag{2.7}
\end{equation*}
$$

Comparing (2.7) with (2.5), we get

$$
\begin{equation*}
b(k, k, q)=a(k, q) . \tag{2.8}
\end{equation*}
$$

3. For $x=-q$, Eq. (2.3) becomes

$$
\begin{equation*}
A(-q, q)=\frac{1}{1+} \frac{q}{1+} \frac{q^{2}}{1+} \frac{q^{3}}{1+} \ldots \tag{3.1}
\end{equation*}
$$

It is known [3, p. 293] that the continued fraction

$$
\frac{1}{1+} \frac{q}{1+} \frac{q^{2}}{1+} \cdots=\prod_{n=0}^{\infty} \frac{\left(1-q^{5 n+2}\right)\left(1-q^{5 n+3}\right)}{\left(1-q^{5 n+1}\right)\left(1-q^{5 n+4}\right)}
$$

Thus (2.5) yields the identity

$$
\begin{equation*}
\sum_{n=0}^{\infty}(-1)^{n} a(n, q) q^{n}=\prod_{n=0}^{\infty} \frac{\left(1-q^{5 n+2}\right)\left(1-q^{5 n+3}\right)}{\left(1-q^{5 n+1}\right)\left(1-q^{5 n+4}\right)} \tag{3.2}
\end{equation*}
$$

Another connection in which $a(n, q)$ occurs is the following. It can be shown that $a(n+1, q)$ is the number of weighted triangular arrays

$$
\begin{array}{lllll}
a_{11} & & a_{12} & \ldots & a_{1 n} \tag{3.3}\\
& a_{21} & \ldots & a_{2, n-1} & \\
& & \ldots & \\
& & a_{n 1} & &
\end{array},
$$

where $a_{i j}=0$ or 1 and
(3.4)

$$
a_{i j} \geqslant a_{i+1, j-1}
$$

$$
a_{i j} \geqslant a_{i+1, j}
$$

More precisely

$$
\begin{equation*}
a(n+1, q)=\sum q^{\Sigma a i j} \tag{3.5}
\end{equation*}
$$

where the outer summation is over all (0.1) arrays (3.3) satisfying (3.4) and the sum $\Sigma a_{i j}$ is simply the number of ones in the array.
For example, for $n=2$, we have the arrays

This gives

0	1
0	0

$0 \quad 1$
0
11
0
$1 \quad 1$ 1

For $n=3$ we have

000	100	010	001	110	101	011	110	011	111
0	0	0	0	0	0	0	0	0	0

111	111	111	11
10	01	11	11
0	0	0	1

This gives

$$
1+3 q+2 q^{2}+3 q^{3}+2 q^{6}+q^{5}+q^{6}=a(4, q) .
$$

Let $T_{k}(n)$ denote the number of solutions in non-negative integers $a_{i j}$ of the equation

$$
n=\sum_{i=1}^{k} \sum_{j=1}^{k-i+1} a_{i j}
$$

where the $a_{i j}$ satisfy the inequalities

$$
a_{i j} \geqslant a_{i+1, j}, \quad a_{i j} \geqslant a_{i+1, j-1} .
$$

It has been proved in [2] that
(3.6)

$$
\sum_{n=1}^{\infty} T_{k}(n) x^{n}=\frac{1}{\left(1-x^{2 k-1}\right)\left(1-x^{2 k-3}\right)^{2} \cdots\left(1-x^{5}\right)^{k-2}\left(1-x^{3}\right)^{k-1}(1-x)^{k}}
$$

REFERENCES

1. L. Carlitz, "Sequences, Paths, Ballot Numbers," The Fibonacci Quarterly, Vol. 10, No. 5 (Dec. 1972), pp. 531550.
2. L. Carlitz and Richard Scoville, "A Generating Function for Triangular Partitions," Mathematics of Computation, Vol. 29 (1975), pp. 67-77.
3. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1938.
