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Let Fn be the nth term in the Fibonacci sequence, defined by 
Fo = 0, Fj = 1, Fn+2 - Fn+j + Fn, 

and let Lm be the nth term in the Lucas sequence, defined by 

LQ = 2, L-i = 1, Ln+2 = Ln+1 + in -
In a previous paper [4], kthe author proved that the only numbers in the Fibonacci sequence of the form 

y2 + 1 are 
Fx = 1, F2 = 1, F3 = 2 and Fs = 5. 

The purpose of the present paper is to prove the corresponding result for Lucas numbers. In particular, we prove the 
following: 

Theorem. The only numbers in the Lucas sequence of the form 
y2 + 1, y e z, y > 0 

are L0 =2 and Lt = 1. 
In the course of our investigations, we shall require the following results, some of which were proved by Cohn [1], 

[2], [3]. 

(1) L2n = L* + 2(-1)n-1 . 

(2) (F3n, L3n) = 2 and (Fn, Ln) - 7 if 3 Ifn. 
(3) L2 5F2 4(^vn 

n n 
(4) If F2n = x2, n > 0, then 2n * 0,2 or 12. 

(5) The only non-negative solutions of the equation x2 -5y* ~4 are 
[x,y] = [2,0], [3,1] and [322,12]. 

(6) Ln is never divisible by 5 for any n. 

(7) If a=tt^H/ $=LzJi then Fn - ^ - ^ - . 

(8) F2n = FnLn . 

(9) If Ln = x2, n > 0, then n = / or 3. 

(10) If Ln = 2x2, n > 0, then n = 0 or 6. 

We now return to the proof of our theorem, and consider two cases, 
CASE I. n even: If L2n = y2 + I then by (1), either 

y2 + 1 = L2
n+2 or y2 + 1 = L2-2. 
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The first case yields 
L2

n-~y2=-1, Ln = Q, y=1, 

which is impossible. The second case yields 
L%-y* =3, 

and it is easily proved that the only integer solution of this equation is 
L„ = 2, y*1. 

CASE II. n odd; First, we prove the following Lemmas: 
Lemma 1. \\F2n = 5x2 then n = 0. 
Proof. By (8), we have FnLn = 5x2 and, by (2), either 

(Fn/Ln) = / or (Fn,L„) = 2. 

Iff/7,,, I * ; =7, then, by (6), 
Fn = 5s\ Ln = t2 . 

But then n= 7 or 3 and Ft 5s2. If (Fm Ln) = 2, then we conclude that 
Fn = Ws2, Ln * 2t2 . 

By (W),n = 0or 6. ButFn= Ws2 only for n = 0. 
Lemma 2. The only integer solution of the equation*/2 - 125^=41$ 

u = +2, v - 0. 

Proof. If u2 - 125v* = 4, then u and 5v2 are a set of solutions of 
p2 -5q2 =4 

thus 

u + 5v2s/5 = 2 ItJl " = 2a2n, u-5v2s/5 = 2$2n . 

so F2n = 5v2 and thus v = 0. 
Now let us use (3) with n odd and Ln = y2 + tm • We get 

(11) (y2 + 1)2+4 « 5x2 , 

and we wish to show that the only integer solution of this equation is y - 0, x = 1. Note first that if y is odd the 
equation is impossible mod 16. 

On factorizing (11) over the Gaussian integers, we set 
(y2 + 1 +2i)(y2 + 1 - 2i) = 5x2. 

Since y is even, the two factors on the left-hand side of this equation are relatively prime. Thus we conclude 
y2 + 1+2i = (1 +2i)(a+bi)2 . 

This yields 
a2 + ab-b2 = 1, a2 - 4ab - b2 = y2 + 1, 

i.e., 
(12) a2+ab-b2 = 7 
and 

Sab - -y2 . 

The first equation of (12) yields [a,b)= 7, and it may be written 
(13) (2a + b)2 -5h2 - 4. 
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Since (a,b) = 1 the second equation of (12) yields either 

(14) b = +t\ a = +5a2 

or 
(15) b = ±5t\ a = +s2 . 
Equations (13) and (14) yield 

(+10s2 ±t2)2 -5t« = 4. 

By (5), the only integer solutions of this equation occur for t = 0, 1 or 12. But none of these values of t yield a value 
for s. Equations (13) and (15) yield 

(+2s* ± ft2)* - 125t* = 4. 

By Lemma 2,t = 0,s= 1,a = + 1, b = 0, Ln~ L The proof is complete. 
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* * * * * * * 
[Continued from P. 339.] 

Since 
(a/-1) = (b/-1) = I 

therefore 
(-a/-b)(-b/-a) = (a/b)(b/a)(-1/a)(-1/b) 

= ((- 1/a)/(- 1/b))(- 1/a)(- 1/b) 

= 1 
if and only if 

(-1/a) = (-1/b) - 7. 
Therefore, 
(4) (-a/-b)(-h/-a) = -((-1/-a)/(-1/-b». 

From (1), (2), (3) and (4), it can be seen that the theorem is true for all sixteen combinations of 
(a/-1) = ±1, (b/-1) = ±1, (-1/a) = ±1 and (-1/b) = ±1. 

Corollary 1. If a = 0 or 1 (mod 2), /? = 1 (mod 2) and (a,b)= 1, and if ax ^a2 (mod/?), then 

<«*> - ( w ^ ) • 
In other words, (ala2/b)= 1 if and only \\axa2 is positive and/or b is positive. 

[Continued on P. 344.] 


