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Let F,, be the n™ term in the Fibonacci sequence, defined by
Fo=0 F;=1 Fp+2= Fps1+Fp,
and let L, be the n®™ term in the Lucas sequence, defined by
Lo=2 Ly=1 Lpt2=1Lps1+Ly.

In a previous paper [4], .the author proved that the only numbers in the Fibonacci sequence of the form
y: + 1 are
F,.=1 F, =1 F,=2 ad F, =5.
The purpose of the present paper is to prove the corresponding result for Lucas numbers. In particular, we prove the
following:

Theorem. The only numbers in the Lucas sequence of the form
y*+1, yez y=>10
areLly=2amd L, = 1.
In the course of our investigations, we shall require the following results, some of which were proved by Cohn [1],

(21, [3].

(1) Lon = L2+2(-1)"7

(2) (F3n, L3n) = 2 and (Fp,Lp) = 1 if 3j/n.
2 2 _ n

3) 12— 5F2 = 4(-1)",

(4) If Fop=x%* n>0 then 2n=202o0r12

(5) The only non-negative solutions of the equation x> — 5y* =4 are
Iyl = [20], [31] and [322,12].

(6) L, is never divisible by 5 for any n.

= 7+\/§ = 1— \5 = a’n i
() f a > B 5 then Fn ——-ﬁ—\/g
(8) Fon, = Fplp, .
(9) If Lp,=x* n>0 then n=10o3
(10) If L, =2x* n >0 then n=20orbé.

We now return to the proof of our theorem, and consider two cases,
CASE I. n even: If Lo, =y? +1, then by (1), either
y:+1=1L2+2 or yr+1=1L}-2.
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The first case yields
Lh~y*=—1, Lp=40 1y=1,

which is impossible. The second case yields
L,Z.' - y2 = 3]
and it is easily proved that the only integer solution of this equation is
Lp=2 y=1.

CASE Il. n odd: First, we prove the following Lemmas:

Lemma 1. If Fo, = 5x* then n=0.

Proof. By (8), we have F,L, = 5x* and, by (2), either

(Fn, Lp) = 1 or (Fn, Ln) = 2.
If (F,, Ly) =1, then, by (6),
Fn = 552, L, =t2.
But thenn =7 or3 and F # 5s%. If (F,,, L,) = 2, then we conclude that
F, = 10s?, L, = 2t*.
By (10),n = 0 or 6. But F, = 10s* only forn=0
Lemma 2. The only integer solution of the equation u? — 725/ =4 is
u=+2 v=0_0
Prooﬁ If u? — 125v* = 4, then v and 5v? are a set of solutions of
p*—5g7 = 4
thus
n
U525 = 2 ""—"Zx@ =207,  u-5nJF = 262"

0 Fo, = 5v2 and thus v = 0.

Now let us use (3) with n odd and L, =y + 7, We get
(11) (y*+1)*+4 = 5x*,
and we wish to show that the only integer solution of this equation is y = 0, x = 7. Note first that if y is odd the

equation is impossible mod 16.
On factorizing (11) over the Gaussian integers, we set

fy2 +1+2i)ly* +1-2i) = 5x2.

Since y is even, the two factors on the left-hand side of this equation are relatively prime. Thus we conclude
y2+1+2i = (1+2i)(a+bi)?.

This yields
a* +ab—-b* = 1, a%—4ab—h* = y2+171,
i.e.,
(12) a*+ab—b* =1
and

bab = —y* .
The first equation of (12) yields (a,6) = 7, and it may be written
(13) (2a + b)* — 5b2 = 4,
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Since (a,b) = 1 the second equation of (12) yields either

(14) b = +t2, a = ¥53*
ar
(15) b = +512, a = Fs? .

Equations (13) and (14) yield
(F10s* +12)" - 5t* = 4,
By (5), the only integer solutions of this equation occur for = 0, 1 or 12. But none of these values of ¢ yield a value
fors. Equations (13) and (15) yield
(F252 + 512)° — 125t* = 4,
By Lemma 2,t=0,s=1,a=+1,b=0, L, =1 The proofis complete.
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[Continued from P. 339.]

Since
fa/~1) = (b/~1) = 1,
therefore
(-a/~b)(—b/~a) = (a/b)b/a)(—1/a)(-1/b)
= ((—17a)/(-1/b))(—1/a)(-1/b)
=1
if and only if
(—1/a) = (-1/b) = 1.
Therefore,
(4) (—a/~b)(~b/-a) = —((—1/-a)/(—-1/-b)).

From (1), (2), (3) and (4), it can be seen that the theorem is true for all sixteen combinations of
fa/~1) = #1, (b/~1) = #1, (-1/a) = £1 and (-1/b) = #1.
Corollary 1. 1fa=00r1(mod 2), 5 =1 (mod 2) and (3,b) =1, and if 2, =a, (mod b), then

(a,a,/b) = ( (i(l[;z—_/i_)l{ )

In other words, (a,a,/b) = 1 if and only if a, a, is positive and/or b is positive.

[Continued on P. 344.]



