# ON LUCAS NUMBERS WHICH ARE ONE MORE THAN A SQUARE 

## RAPHAEL FINKELSTEIN

Bowling Green State University, Bowling Green, Ohio 43403

Let $F_{n}$ be the $n^{\text {th }}$ term in the Fibonacci sequence, defined by

$$
F_{0}=0, \quad F_{1}=1, \quad F_{n+2}=F_{n+1}+F_{n},
$$

and let $L_{m}$ be the $n^{\text {th }}$ term in the Lucas sequence, defined by

$$
L_{0}=2, \quad L_{1}=1, \quad L_{n+2}=L_{n+1}+L_{n}
$$

In a previous paper [4], the author proved that the only numbers in the Fibonacci sequence of the form $y^{2}+1$ are

$$
F_{1}=1, \quad F_{2}=1, \quad F_{3}=2 \text { and } F_{5}=5 .
$$

The purpose of the present paper is to prove the corresponding result for Lucas numbers. In particular, we prove the following:
Theorem. The only numbers in the Lucas sequence of the form

$$
y^{2}+1, \quad y \in z, \quad y \geqslant 0
$$

are $L_{0}=2$ and $L_{1}=1$.
In the course of our investigations, we shall require the following results, some of which were proved by Cohn [1], [2], [3].

$$
\begin{gather*}
L_{2 n}=L_{n}^{2}+2(-1)^{n-1} .  \tag{1}\\
\left(F_{3 n}, L_{3 n}\right)=2 \quad \text { and } \quad\left(F_{n}, L_{n}\right)=1 \text { if } 3 \nmid n .
\end{gather*}
$$

(2)
(3)

$$
L_{n}^{2}-5 F_{n}^{2}=4(-1)^{n}
$$

(4)

$$
\text { If } F_{2 n}=x^{2}, n>0, \text { then } 2 n=0,2 \text { or } 12 .
$$

(5) The only non-negative solutions of the equation $x^{2}-5 y^{4}=4$ are

$$
[x, y]=[2,0],[3,1] \text { and }[322,12]
$$

(6)

$$
L_{n} \text { is never divisible by } 5 \text { for any } n \text {. }
$$

(7)

$$
\text { If } a=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2} \quad \text { then } \quad F_{n}=\frac{a^{n}-\beta^{n}}{\sqrt{5}} \text {. }
$$

$$
F_{2 n}=F_{n} L_{n} .
$$

$$
\begin{equation*}
\text { If } L_{n}=x^{2}, n>0, \quad \text { then } n=1 \text { or } 3 . \tag{9}
\end{equation*}
$$

$$
\text { If } L_{n}=2 x^{2}, n>0, \quad \text { then } \quad n=0 \text { or } 6 .
$$

We now return to the proof of our theorem, and consider two cases,
CASE I. $n$ even: If $L_{2 n}=y^{2}+1$, then by (1), either

$$
y^{2}+1=L_{n}^{2}+2 \quad \text { or } \quad y^{2}+1=L_{n}^{2}-2
$$

The first case yields

$$
L_{n}^{2}-y^{2}=-1, \quad L_{n}=0, \quad y=1
$$

which is impossible. The second case yields

$$
L_{n}^{2}-y^{2}=3
$$

and it is easily proved that the only integer solution of this equation is

$$
L_{n}=2, \quad y=1
$$

CASE II. $n$ odd: First, we prove the following Lemmas:
Lemma 1. If $F_{2 n}=5 x^{2}$ then $n=0$.
Proof. By (8), we have $F_{n} L_{n}=5 x^{2}$ and, by (2), either

$$
\left(F_{n}, L_{n}\right)=1 \quad \text { or } \quad\left(F_{n}, L_{n}\right)=2
$$

If $\left(F_{n}, L_{n}\right)=1$, then, by (6),

$$
F_{n}=5 s^{2}, \quad L_{n}=t^{2}
$$

But then $n=1$ or 3 and $F \neq 5 s^{2}$. If $\left(F_{n}, L_{n}\right)=2$, then we conclude that

$$
F_{n}=10 s^{2}, \quad L_{n}=2 t^{2}
$$

By (10), $n=0$ or 6 . But $F_{n}=10 s^{2}$ only for $n=0$.
Lemma 2. The only integer solution of the equation $u^{2}-125 v^{4}=4$ is

$$
u= \pm 2, \quad v=0
$$

Proof. If $u^{2}-125 v^{4}=4$, then $u$ and $5 v^{2}$ are a set of solutions of

$$
p^{2}-5 q^{2}=4
$$

thus

$$
u+5 v^{2} \sqrt{5}=2 \quad \frac{3+\sqrt{5}}{2}^{n}=2 a^{2 n}, \quad u-5 v^{2} \sqrt{5}=2 \beta^{2 n} .
$$

so $F_{2 n}=5 v^{2}$ and thus $v=0$.
Now let us use (3) with $n$ odd and $L_{n}=y^{2}+1$. We get

$$
\begin{equation*}
\left(y^{2}+1\right)^{2}+4=5 x^{2} \tag{11}
\end{equation*}
$$

and we wish to show that the only integer solution of this equation is $y=0, x=1$. Note first that if $y$ is odd the equation is impossible mod 16.
On factorizing (11) over the Gaussian integers, we set

$$
\left(y^{2}+1+2 i\right)\left(y^{2}+1-2 i\right)=5 x^{2} .
$$

Since $y$ is even, the two factors on the left-hand side of this equation are relatively prime. Thus we conclude

$$
y^{2}+1+2 i=(1+2 i)(a+b i)^{2}
$$

This yields

$$
a^{2}+a b-b^{2}=1, \quad a^{2}-4 a b-b^{2}=y^{2}+1
$$

i.e.,
(12)

$$
a^{2}+a b-b^{2}=1
$$

and

$$
5 a b=-y^{2} .
$$

The first equation of (12) yields $(a, b)=1$, and it may be written

$$
\begin{equation*}
(2 a+b)^{2}-5 b^{2}=4 \tag{13}
\end{equation*}
$$

Since $(a, b)=1$ the second equation of (12) yields either
(14)
or
(15)

Equations (13) and (14) yield

$$
\begin{array}{ll}
b= \pm t^{2}, & a=\mp 5 a^{2} \\
b= \pm 5 t^{2}, & a=\mp s^{2} .
\end{array}
$$

$$
\left(+10 s^{2} \pm t^{2}\right)^{2}-5 t^{4}=4
$$

By (5), the only integer solutions of this equation occur for $t=0,1$ or 12 . But none of these values of $t$ yield a value for $s$. Equations (13) and (15) yield

$$
\left.\digamma+2 s^{2} \pm 5 t^{2}\right)^{2}-125 t^{4}=4
$$

By Lemma $2, t=0, s=1, a= \pm 1, b=0, L_{n}=1$. The proof is complete.

## REFERENCES

1. J. H. E. Cohn, "On Square Fibonacci Numbers," Journal London Math. Soc., 39 (1964), pp. 537-540.
2. J. H. E. Cohn, "Square Fibonacci Numbers, Etc.," The Fibonacci Quarterly, Vol. 2, No. 2 (April 1964), pp. 109113.
3. J. H. E. Cohn, "Lucas and Fibonacci Numbers and Some Diophantine Equations," Proc. Glasgow Math. Assoc., 7 (1965), pp. 24-28.
4. R. Finkelstein, "On Fibonacci Numbers which are One More than a Square," Journal Für dïe reine und angew Math, 262/263 (1973), pp. 171-182.
[Continued from P. 339.]
***

Since

$$
(a /-1)=(b /-1)=1
$$

therefore

$$
\begin{aligned}
(-a /-b)(-b /-a) & =(a / b)(b / a)(-1 / a)(-1 / b) \\
& =((-1 / a) /(-1 / b))(-1 / a)(-1 / b) \\
& =1
\end{aligned}
$$

if and only if

$$
(-1 / a)=(-1 / b)=1
$$

Therefore,
(4)

$$
(-a /-b)(-b /-a)=-((-1 /-a) /(-1 /-b))
$$

From (1), (2), (3) and (4), it can be seen that the theorem is true for all sixteen combinations of

$$
(a /-1)= \pm 1, \quad(b /-1)= \pm 1, \quad(-1 / a)= \pm 1 \quad \text { and } \quad(-1 / b)= \pm 1
$$

Corollary 1. If $a \equiv 0$ or $1(\bmod 2), b \equiv 1(\bmod 2)$ and $(a, b)=1$, and if $a_{1} \equiv a_{2}(\bmod b)$, then

$$
\left(a_{1} a_{2} / b\right)=\left(\frac{\left(a_{1} a_{2} /-1\right)}{(b /-1)}\right)
$$

In other words, $\left(a_{1} a_{2} / b\right)=1$ if and only if $a_{1} a_{2}$ is positive and/or $b$ is positive.
[Continued on P. 344.]

