DISTRIBUTION OF THE ZEROES OF ONE CLASS OF POLYNOMIALS

N. GEORGIEVA

Sofia, Bulgaria

INTRODUCTION

In the present paper we shall prove that the zeroes of the real polynomials

$$
\begin{equation*}
f_{0}(x)=0, \quad f_{1}(x)=s, \quad f_{i}(x)=x, \quad f_{n+1}(x)=x f_{n}(x)+f_{n-1}(x), \quad n=2,3, \cdots \tag{1}
\end{equation*}
$$

with $s \neq 0$ and $n \geqslant 2$ are simple, of the form $-2 i \cos \theta$, where $i^{2}=-1$. and if $2 i \cos \theta_{j}^{(n+1)}, j=1, \cdots, n$ are the zeroes of $f_{n+1}(x)$, then the points $\cos \theta_{j}^{(n+1)}, j=1, \cdots, n$ are divided by $\cos \theta_{j}^{(n)}, j=1, \cdots, n-1$ and for every interval between two successive points $-\left[\cos \theta_{j}^{(n+1)} \cos \theta_{j+1}^{(n+1)}\right]$ one and only one of the following three possibilities holds:
(a) The interval contains one of $\cos \theta_{j}^{(n-k+i)}, 1 \leqslant k \leqslant n-1, j=1, \cdots, n-k$.
(b) It contains one of $\cos (j \pi / k), j=1, \cdots, k-1$ or
(c) One of the boundary points of it coincides with one of $\cos \theta_{j}^{(n-k+1)}$, and $\cos (j \pi / k)$ simultaneously.

When $s=0$, then $f_{n}(x)$ becomes

$$
f_{0}(x)=0, \quad f_{n}(x)=x u_{n-1}(x), \quad n=1, \cdots,
$$

where $u_{n}(x)$ are derived from (1) for $s=1$. $u_{n}(x)$ are Fibonacci polynomials.

1. ON THE ZEROES OF FIBONACCI POLYNOMIALS

From the well known formula:

$$
\sum_{k=0}^{[n / 2]}\binom{n-k}{k} 2^{n-2 k} z^{k}=\left((1+\sqrt{z+1})^{n+1}-(1-\sqrt{z+1})^{n+1}\right) / 2 \sqrt{z+1}
$$

and [2] it follows that:

$$
\begin{equation*}
u_{n}(x)=\left(2^{n} \sqrt{x^{2}+4}\right)^{-1}\left(\left(x+\sqrt{x^{2}+4}\right)^{n}-\left(x-\sqrt{x^{2}+4}\right)^{n}\right), \quad n=0,1,2, \cdots . \tag{2}
\end{equation*}
$$

Then for $x=2 i \cos \theta$ we get:

$$
\begin{equation*}
u_{n}(2 i \cos \theta)=-\left(i^{n+1} \sin n \theta\right) / \sin \theta \tag{3}
\end{equation*}
$$

So, the numbers $2 i \cos (j \pi / n)$, where j is an integer and $\sin (j \pi / n) \neq 0$, are zeroes of $u_{n}(x), n \geqslant 2$. But only $n-1$ of them are distinct. Indeed, if j gets values j_{1} and j_{i} and $j_{i}-j_{2}$ is a multiple of $2 n$ then

$$
\cos \left(j_{1} \pi / n\right)=\cos \left(j_{2} \pi / n\right) .
$$

Otherwise

$$
\cos ((n+j) \pi / n)=\cos ((n-j) \pi / n) \quad \text { for } \quad 0 \leqslant j \leqslant n .
$$

Therefore the numbers $2 i \cos (j \pi / n), j=1, \cdots, n-1$ are $n-1$ different zeroes of (2). Since $u_{n}(x)$ is a polynomial of the $n-1^{\text {th }}$ degree they are all its zeroes.

2. DISTRIBUTION OF THE ZEROES OF $f_{n}(x), n=2, \cdots$, WHEN $s \neq 0$

By induction it may be proved that:
(4)

$$
f_{n}(x)=u_{n}(x)+(s-1) u_{n-2}(x), \quad n \geqslant 2 .
$$

Owing to (3) and (4) we have:

$$
f_{n}(2 i \cos \theta)=i^{n-1}((\sin n \theta / \sin \theta)-(s-1)(\sin (n-2) \theta) / \sin \theta) .
$$

Functions

$$
Q_{n}(\cos \theta)=\sin n \theta / \sin \theta, \quad n=1, \cdots,
$$

are Tchebishev's polynomials of second class. Let

$$
Q_{-2}(\cos \theta)=-1, \quad Q_{0}(\cos \theta)=0 \quad \text { and } \quad P_{n}(\cos \theta)=Q_{n}(\cos \theta)-(s-1) Q_{n-2}(\cos \theta), \quad n=1, \cdots
$$

Then the following conditions are fulfilled:

$$
\begin{gathered}
P_{0} \cdot(\cos \theta)=s, \quad P_{2}(\cos \theta)=2 \cos \theta, \\
P_{n+1}(\cos \theta)=2 \cos \theta P_{n}(\cos \theta)-P_{n-1}(\cos \theta), \quad n=1,2, \cdots
\end{gathered}
$$

and the polynomials

$$
P_{0}(\cos \theta), \quad P_{1}(\cos \theta), \cdots, P_{n+1}(\cos \theta)
$$

form a Sturm's row. From [1] -the zeroes of $P_{n+1}(\cos \theta)$ are real, distinct and the zeroes of $P_{n}(\cos \theta)$ divide those of $P_{n+1}(\cos \theta)$. So, $f_{n+1}(x)$ has n distinct zeroes-

$$
2 i \cos \theta_{j}^{(n+1)}, \quad j=1,2, \cdots, \cdots, n
$$

too and the points $\cos \theta_{j}^{(n+2)}, j=1, \cdots, n$ are divided by $\cos \theta_{j}^{(n)}, j=1, \cdots, n-1$.
The position of the zeroes of $P_{n-k}(\cos \theta)$ in relation to those of $P_{n}(\cos \theta)$ can be examined by the help of the lemmas:

Lemma 1.

$$
\begin{equation*}
P_{n}(\cos \theta)=Q_{k}(\cos \theta) P_{n-k}(\cos \theta)-Q_{k-1}(\cos \theta) P_{n-k+1}(\cos \theta), \tag{4}
\end{equation*}
$$

where n and k are positive integers and $n \geqslant 2,1 \leqslant k<n$.
This is proved by induction over n. It can be directly verified that it is valid for $n=2, k=1$ and for $n=3, k=1,2$. If we assume that (4) is true for some $n-1>3, k=1,2, \cdots, n-2$ and $n, k=1, \cdots, n-1$, then

$$
\begin{aligned}
P_{n+1}(\cos \theta) & =2 \cos \theta P_{n}(\cos \theta)-P_{n-1}(\cos \theta)=2 \cos \theta\left(Q_{k}(\cos \theta) P_{n-k}(\cos \theta)-Q_{k-1}(\cos \theta) P_{n-k-1}(\cos \theta)\right) \\
& =a_{k}(\cos \theta) P_{n-k-1}(\cos \theta)+Q_{k-1}(\cos \theta) P_{n-k-2}(\cos \theta) \\
& =a_{k}(\cos \theta) P_{n-k+1}(\cos \theta)-Q_{k-1}(\cos \theta) P_{n-k}(\cos \theta)=a_{k}(\cos \theta) P_{n-k+1}(\cos \theta),
\end{aligned}
$$

which is true for $k=1, \cdots, n-2$. When $k=n-1$ and $k=n$, we have

$$
P_{n+1}(\cos \theta)=2 \cos \theta Q_{n}(\cos \theta)-s Q_{n-1}(\cos \theta)
$$

the validity of which is easily proved by induction over n.
Lemma 2.

$$
P_{n-k}\left(\cos \theta_{j}^{(n+1)}\right)=a_{k-1}\left(\cos \theta_{j}^{(n+1)}\right) P_{n-1}\left(\cos \theta_{j}^{(n+1)}\right), \quad j=1,2, \cdots, n .
$$

This can be proved by induction over k.
Owing to Lemma 1 and the results received above, the common zeroes of $P_{n}(\cos \theta)$ and $P_{n-k}(\cos \theta)$ are zeroes of $Q_{k-1}(\cos \theta)$. Moreover $P_{n}(\cos \theta)$ and $Q_{k-1}(\cos \theta)$ have no other common zeroes.
Let

$$
\left(\cos \theta_{j}^{(n+1)}, \cos \theta_{j+1}^{(n+1)}\right), \quad 1 \leqslant j \leqslant n-1
$$

be an interval between two successive zeroes of $P_{n}(\cos \theta)$ which doesn't contain any zeroes of $Q_{k-1}(\cos \theta)$.
Then

$$
\begin{aligned}
& Q_{k-1}\left(\cos \theta_{j}^{(n+1)}\right), Q_{k-1}\left(\cos \theta_{j+1}^{(n+1)}\right)>0 \\
& P_{n-1}\left(\cos \theta_{j}^{(n+1)}\right), P_{n-1}\left(\cos \theta_{j+1}^{(n+1)}\right)<0
\end{aligned}
$$

and by Lemma 2, we conclude that:

$$
P_{n-k}\left(\cos \theta_{j}^{(n+1)}\right), \quad P_{n-k}\left(\cos \theta_{j+1}^{(n+1)}\right)<0
$$

This shows that $P_{n-k}(\cos \theta)$ has an odd number of zeroes in

$$
\left[\cos \theta_{j}^{(n+1)}, \cos \theta_{j+1}^{(n+1)}\right]
$$

If $P_{n-k}(\cos \theta)$ has more than one zero in this interval, from Lemma 1 it will follow that $P_{n}(\cos \theta)$ has a zero in

$$
\left(\cos \theta_{j}^{(n+1)}, \cos \theta_{j+1}^{(n+1)}\right)
$$

which contradicts our assumption. Therefore every interval

$$
\left[\cos \theta_{j}^{(n+1)}, \cos \theta_{j+1}^{(n+1)}\right]
$$

which doesn't contain a zero of $Q_{k-1}(\cos \theta)$, contains only one zero of $P_{n-k}(\cos \theta)$. In a similar way it is proved that if in

$$
\left[\cos \theta_{j}^{(n+1)}, \cos \theta_{j+1}^{(n+1)}\right]
$$

there is no zero of $\rho_{n-k}(\cos \theta)$, it contains one zero of $Q_{k-1}(\cos \theta)$.
Thus we proved that in every interval between two successive points of

$$
\cos \theta_{j}^{(n+1)}, \quad j=1, \cdots, n
$$

there is either one and only one of

$$
\cos \theta_{j}^{(n-k+1)}, \quad j=1, \cdots, n-k
$$

or one and only one of

$$
\cos (j \Pi / k), \quad j=1, \cdots, k-1
$$

or one of the boundary points of this interval coincides with one of

$$
\cos \theta_{j}^{(n-k+1)}, j=i, \cdots, n-k \quad \text { and of } \quad \cos (j \Pi / k), j=1, \cdots, k-1 .
$$

1. Н. SGеешKKOB, "Hyли Ht толинПMИT-", published by BAN, 1963.
2. M.N.S. Swamy, Problem B-74, The Fïbonacci Quarterly, Vol. 3, No. 3 (Oct. 1965), p. 236.
