$$
F(x)=x+x^{p+2}+x^{2 p+3}+x^{3 p+4}+\cdots=x /\left(1-x^{p+1}\right)
$$

in Theorem 1.1 gives

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{n} x^{n}=\frac{1}{1-\frac{x}{1-x^{p+1}}}=\frac{1-x^{p+1}}{1-x-x^{p+1}} \tag{4.4}
\end{equation*}
$$

so that

$$
C_{n}=u(n ; p, 1)-u(n-p-1 ; p, 1) .
$$

Again, $p=1$ yields Fibonacci numbers, being the case of the sequence of odd integers, where $C_{n}=F_{n}$, as in (2.6).

REFERENCES

1. Krishnaswami Alladi and Verner E. Hoggatt, Jr., "Compositions with Ones and Twos," The Fibonacci Quarterly, Vol. 13, No. 3 (October 1975), pp.
2. V. E. Hoggatt, Jr., and D. A. Lind, "A Primer for the Fibonacci Numbers: Part VI," The Fibonacci Quarterly, Vol. 5, No. 5 (Dec. 1967), pp. 445-460. Equation 4.17.
3. Marjorie Bicknell and Verner E. Hoggatt, Jr., "A Primer for the Fibonacci Numbers: Part IX," The Fibonacci Quarterly, Vol. 9, No. 5 (December 1971), pp. 529-537.
4. V. C. Harris and Carolyn C. Styles, "A Generalization of Fibonacci Numbers," The Fibonacci Quarterly, Vol. 2, No. 4 (December 1964), pp. 277-289.
5. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Diagonal Sums of Generalized Pascal Triangles," The Fibonacci Quarterly, Vol. 7, No. 4 (November 1969), pp. 341-358.

*

A NOTE ON TOPOLOGIES ON FINITE SETS

A. R. MITCHELL and R. W. MITCHELL

The University of Texas at Arlington, Texas 76010

In an article [1] by D. Stephen, it was shown that an upper bound for the number of elements in a non-discrete topology on a finite set with n elements is $3\left(2^{n-2}\right)$ and moreover, that this upper bound is attainable. The following example and theorem furnish a much easier proof of these results.
Example. Let b, c be distinct elements of a finite set X with $n(n \geqslant 2)$ elements. Define

$$
\Gamma=\{A \subset X 1 b \in A \text { or } c \notin A\} .
$$

Now Γ is a topology on X and since there are 2^{n-1} subsets of X containing b and 2^{n-2} subsets of X which do not intersect $\{b, c\}$ we have

$$
2^{n-1}+2^{n-2}=3\left(2^{n-2}\right)
$$

elements in Γ.
Theorem. If Σ is a non-discrete topology on a finite set X, then Σ is contained in a topology of the type defined in the example.

