5. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Pascal, Catalan, and General Sequence Convolution Arrays in a Matrix," to appear in The Fibonacci Quarterly.
6. V. E. Hoggatt, Jr., and Marjorie Bicknell, "Numeratory Polynomial Coefficient Arrays for Catalan and Related Sequence Convolution Triangles," to appear in The Fibonacci Quarterly.
7. L. Carlitz, "A Note on the Lagrange Expansion Formula," Buletinul Din lasi Tomul XVII (XXI) FASC 3-4, 1971, pp. 39-43.
8. I. Schur, "Identities in the Theory of Power Series," American Journal of Mathematics, Vol. 69 (1947), pp. 14-26.
9. G. N. Raney, Private communication, 1973.
10. H. W. Gould, "Some Generalizations of Vandermonde's Convolution," American Mathematical Monthly, Vol. 63, No. 2, Feb., 1956.
11. H. W. Gould, "Final Analysis of Vandermonde's Convolution," American Mathematical Monthly, Vol. 64, No. 6, June-July, 1957.
12. H. W. Gould and J. Kauchý, "Evaluation of a Class of Binomial Coefficient Summations," Journal of Combinatorial Theory, Vol. 1, No. 2, Sept., 1966.
13. H. W. Gould, "Coefficient Identities for Powers of Taylor and Dirchlet Series," American Mathematical Monthly, Vol. 81, No. 1, Jan., 1974.
14. G. N. Raney, private communication.

* *

[Continued from Page 356.]

Proof. Since Σ is a non-discrete topology on X there exists $c \in X$ with $\{c\} \notin \Sigma$. Let Δ be the topology on X generated by

$$
\Sigma \cup\{\{x\}|x \in x|\{c\}\}
$$

and notice Δ is non-discrete since $\{c\} \notin \Delta$.
Consider

$$
S=\cap\{A \in \Delta \mid c \in A\}
$$

Since Δ is finite if $S=\{c\}$ then $\{c\} \in \Delta$. Thus, choose $b \in S\{c\}$. Let

$$
\Gamma=\{B \subset X \mid b \in B \quad \text { or } \quad c \notin B\}
$$

Let $T \in \Delta$. If $c \in T$ then $S \subset T$ and so $b \in T$ which implies $T \in \Gamma$. If $c \notin T$ then $T \in \Gamma$ by definition of Γ. Hence

$$
\Sigma \subset \Delta \subset \Gamma
$$

Corollary. Every non-discrete topology on a finite set with n elements is contained in a non-discrete topology with $3\left(2^{n-2}\right)$ elements.

REFERENCE

1. D. Stephen, "Topology in Finite Sets," American Mathematican Monthly, 75 (1968), pp. 739-741.
