NON-HYPOTENUSE NUMBERS

DANIEL SHANKS
Naval Ship R\&D Center, Bethesda, Maryland 20084

The non-hypotenuse numbers $n=1,2,3,4,6,7,8,9,11,12,14,16,18, \ldots$ are those natural numbers for which there is no solution of

$$
\begin{equation*}
n^{2}=u^{2}+v^{2} \quad(u>v>0) . \tag{1}
\end{equation*}
$$

Although they occur very frequently for small n they nonetheless have zero density-almost all natural numbers n do have solutions. Only $1 / 15.547$ of the numbers around 10^{100} are NH numbers, and, around $2^{19937}-1$, only 1/120.806.
In a review of a table by A. H. Beiler [1], I had occasion to remark that if $N H(x)$ is the number of such $n \leqslant x$ then

$$
\begin{equation*}
N H(x) \sim A x / \sqrt{\log x} \tag{2}
\end{equation*}
$$

for some coefficient A. Recently, T. H. Southard wished to know this A because of an investigation [2] originating in a study of Jacobi theta functions. Inasmuch as most of the analysis and arithmetic has already been done in [3], one can be more precise and easily compute accurate values of A and C in the asymptotic expansion:
(3)

$$
N H(x)=\frac{A x}{\sqrt{\log x}}\left[1+\frac{C}{\log x}+0\left(\frac{1}{\log ^{2} x}\right)\right] .
$$

Landau's function $B(x)$ is the number of $n \leqslant x$ for which there is a solution of

$$
\begin{equation*}
n=u^{2}+v^{2} . \tag{4}
\end{equation*}
$$

Note: n to the first power, and all u, v allowed. Then

$$
\begin{equation*}
B(x)=\frac{b x}{\sqrt{\log x}}\left[1+\frac{c}{\log x}+0\left(\frac{1}{\log ^{2} x}\right)\right] \tag{5}
\end{equation*}
$$

and I evaluated
(6)

$$
b=0.764223654, \quad c=0.581948659
$$

in [3]. The n of (4) are those n divisible only by 2 , by primes $p \equiv 1(\bmod 4)$, and by even powers of primes $q \equiv 3$ $(\bmod 4)$. If $b_{m}=1$ for any $m=$ any such n, and $b_{m}=0$ otherwise, one has the generating function

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{b_{m}}{m^{s}}=f(s)=\frac{1}{1-2^{-s}} \prod_{p} \frac{1}{1-p^{-s}} \Pi_{q} \frac{1}{1-q^{-2 s}} \tag{7}
\end{equation*}
$$

In contrast, the NH numbers are those divisible by no prime p, and so they are generated by

$$
\begin{equation*}
g(s)=\frac{1}{1-2^{-s}} \Pi_{q} \frac{1}{1-q^{-s}} . \tag{8}
\end{equation*}
$$

Since
(9)

$$
L(s)=1-3^{-s}+5^{-s}-7^{-s}+\ldots=\Pi_{p} \frac{1}{1-p^{-s}} \Pi_{q} \frac{1}{1+q^{-s}}
$$

we can write
(10)

$$
g(s)=f(s) / L(s)
$$

Landau [4] showed that $f(s)$ has a branch point at $s=1$ and a convergent series

$$
\begin{equation*}
f(s)=\frac{a i s^{2}}{\sqrt{1-s}}\left[1+a_{1}(1-s) / a+\cdots\right] \tag{11}
\end{equation*}
$$

in its neighborhood for computable coefficients a, a_{1}, \cdots. In terms of these, one evaluates the coefficients of (5) as

$$
\begin{equation*}
b=\frac{a \Gamma(1 / 2)}{\pi}, \quad c=\left(a_{i}-a\right) / 2 a \tag{12}
\end{equation*}
$$

with the usual method using Cauchy's theorem and integration around the branch point. But $L(s)$ is analytic at $s=1$ and so we have, at once,

$$
\begin{equation*}
d=\frac{a}{L(1)}, \quad \frac{d_{1}}{d}=\frac{a_{1}}{a}+\frac{L^{\prime}(1)}{L(1)} \tag{13}
\end{equation*}
$$

for the new generator
(14)

$$
g(s)=\frac{d i s^{2}}{\sqrt{1-s}}\left[1+d_{1}(1-s) / d+\ldots\right]
$$

Therefore

$$
\begin{equation*}
A=b / L(1), \quad C=c+L^{\prime}(1) / 2 L(1) \tag{15}
\end{equation*}
$$

give the wanted coefficients of (3). Of course, $L(1)=\pi / 4$, and in [3] one has

$$
\begin{equation*}
L^{\prime}(1) / L(1)=\log \left[\left(\frac{\pi}{\widetilde{\omega}}\right)^{2} \frac{e^{\gamma}}{2}\right] \tag{16}
\end{equation*}
$$

in terms of the Euler constant γ and the lemniscate constant $\tilde{\omega}$. So, from [3] one has

$$
\begin{equation*}
A=\frac{2 \sqrt{2}}{\pi} \prod_{q}\left(1-q^{-2}\right)^{-1 / 2}=0.97303978 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
C=\frac{1}{2}\left[1+\log \left(\frac{\pi}{\widetilde{\omega}}\right)-\left.\frac{1}{2} \frac{d}{d s} \log \prod_{q} \frac{1}{1-q^{-2 s}}\right|_{s=1}\right]=0.70475345 \tag{18}
\end{equation*}
$$

In [2] Southard gives

$$
N H(99999)-N H(99000)=295,
$$

while (3), (17) and (18) give

$$
N H(99999)-N H(99000)=289.36
$$

It is known that the third-order term in (3) is positive but it was not computed.

REFERENCES

1. A. H. Beiler, "Consecutive Hypotenuses of Pythagorean Triangles," UMT 74, Math. Comp., Vol. 22, 1968, pp. 690-692.
2. Thomas H. Southard, Addition Chains for the First n Squares, Center Numerical Analysis, CNA-84, Austin, Texas, 1974.
3. Daniel Shanks, "The Second-Order Term in the Asymptotic Expansion of $B(x)$," Math. Comp., Vol. 18, 1964, pp. 75-86.
4. Edmund Landau, "Uber die Einteilung, usw.," Archiv der Math. and Physik (3), Vol. 13, 1908, pp. 305-312.
[Continued from P. 318.]

$$
\begin{aligned}
& (1 /-1)=1 \\
& (-1 / 1)=1 \\
& (1 / 1)=1 .
\end{aligned}
$$

The second entry of the Extended Jacobi Symbol is multiplicative by definition; it will be proved in the corollaries that both entries are also periodic.
The following results are easily derived:
Explicitly,

$$
\begin{gathered}
(0 / 1)=1, \\
(0 / b)=0 \text { if } b \neq 1, \\
(0 /-b)=0 \text { if }-b \neq 1, \\
(2 / \pm b)=(-1)^{\left(b^{2}-1\right) / 8}, \\
(-2 / b)=(-1)^{\left(b^{2}+4 b-5\right) / 8}, \\
(-2 /-b)=(-1)^{\left(b^{2}-4 b-5\right) / 8 .}
\end{gathered}
$$

If $a \neq 0$, then

$$
\begin{gathered}
\left(-a^{2} /-1\right)=-1 ; \\
\left(-1 /-b^{2}\right)=-1 ; \\
(-a / 1)=1, \\
(a /-1)=(a /-1) \text { (see below), } \\
(-a /-1)=-(a /-1) ; \\
(1 / b)=1, \\
(-1 / b)=(-1)^{(b-1) / 2}, \\
(1 /-b)=1, \\
(-1 /-b)=(-1)^{(b+1) / 2}
\end{gathered}
$$

