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ABSTRACT 

In this note, I show that there are infinitely many solutions to the equation 

(n + 1 ) - f n ) [k+ 1 ] \ k+2 J ' 

given by n = F2j+2F2i+3 ~ h k = ^2l^2i+3 ~ ^ where Fn is the nth Fibonacci number, beginning with F0 = 0. This 
gives infinitely many binomial coefficients occurring at least 6 times. The method and results of a computer search 
for repeated binomial coefficients, up to 248:, will be given. 

1. INTRODUCTION 

In [6 ] , I have conjectured that the number of times an integer can occur as a binomial coefficient is bounded. A 
computer search up to 248 has revealed only the following seven nontrivial repetitions: 

120- ( ' / ) - ( ' / ) ; ™ - ( ? ) - ( y ) ; ' * * - ( ? ) - ( ? ) ; 
7140= ( ' f ) - ( * ) ; 11628- ( ' f ) - ( j ) ; « , » - ( * ' ) - ( ' / ) ; 

3003- ( ? ) . ( y ) - ( y ) . 
In [2 ] , it has been shown that the only numbers which are both triangular, i.e., = ( " ) for some n, and tetrahe-

dral, i.e., = I" ) for some n, are 1, 10, 120, 1540 and 7140. The first two are trivial and the last three were also 
found by the computer, giving a check on the search procedure. 

The coefficient 3003 occurs in the following striking pattern in Pascal's triangle: 

1001 2002 3003 
3003 5005 

8008 

I had noticed this pattern some years ago when I discovered that it is the only solution to 

( z ) ; U " 0 • • ( * " * ) - , : ' ; 5 -
and that there is at most one solution to this relation when the right-hand side is replaced by a : h : c. Hence I was 
led to consider determining solutions when the right-hand side was a : b : a+b, or, equivalently and more simply, 
solutions of / \ / \ 
(1) [V+1 ) = \k+2)' 

2. SOLUTION CF EQUATION (1) 

From (1), we have (n + 1)(k+2) = (n-k)(n-k- 1). Setm = n + 1,j= k + 2, thus obtaining m2 +(1-3j)m + 
p - j = O. Solving for/77 gives 
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(2) m = [-1+3ii*J~$F~=7jTT]/2 . 

For this to make sense, we must have that 5p -2j+ 1 is a perfect square, say s/2. We can rewrite this as 

(3) (5j- 1)2 -5v2 = -4. 

Letting u = 5j - 1,C = -4, we have the Peli-like equation 

(4) u2 ~5v2 = C. 

This can be completely solved by standard techniques [5, section 58, p. 204 f f ] . The basic solutions are: 

9+ 4V5"whenC= 1; 2 +y/E when £ = - 1 ; and 1 j-%/5 and 4 + 2^5" when C = - 4 . 

The class of solutions determined by 4 + 2^JB is the same as the class determined by 4 - 2\/5, i.e.,the class Is am-
biguous, in the terminology of [5] . Hence all solutions are given by 

u-x + v-rJ5 = (-1 + y/5)(9 + 4y/5)'', u,- + vgy/S = (1 + s/5)(9 + 4^/5 ) ' \ u/ + v,y/5 - (4 + 2S/B)(9 + 4^/s)1', 

and their conjugates and negatives. 
Let F0 = 0, Fx = 1, Fn+<j = Fn + Fn„f define the Fibonacci numbersand iet£,0 =2, Lx = 1, Ln+f - Ln + Ln„i de-

fine the Lucas numbers. 
Lemma. (Ln + Fn^5)(9 + 4^/s) = Ln+6 + Fn+&sf5 . 

Proof. Let a= (1+>j5)/2, /? = (1 - \fE)/2. By the Binet formulas, we have 

Fn = (an-pn)/sj5, Ln - an+Pn, 

and so Ln + Fns/5 = 2an. Hence the lemma reduces to showing a6 = 9 + 4>j5, which is readily done. 
Since the basic solutions u0 + vQ\f5 given above are respectively 

L„.t + F-i>j5. Lx+FlS/E and Ld+FdS/5, 

the general solution of (4) can be written as 

(5) L2j-1 + F2i-I>j5, i = 0 , l -

and we may now ignore the conjugates and negatives. 
To solve (3), we must have 5 / - 1 = L21-1. From the Binet formula, one may obtain L/^2-31 (mod 5) and hence 

£/ = - 1 (mod 5) if and only if/ = 3 (mod 4). Recalling t h a t / - k + 2 >2, the solutions of (3) are thus 

/ = (L4i+3 + 1)/5, v = F4j+3, 1 = 1, 2, - . 

By standard manipulations, we obtain 

(6) / = F2jF2i+3 +1, k = F2jF2j+3 - I ™ = F2J+2F2j+3= (L4i+5 - 1)/5, n = F2l+2F2l+3 ~ 1. 

Finally, observe that 

( * ) • • ( * " / ) =(k+1):(n-k) = F2i:F2i+1, 

( * ) •' \ k " l ) : \kl2J = f 2 / •' F21H = F2i+2-

The case/ = 1 givesn= 14, k~ 4 and 

( ' / ) • ( y ) - * » -
The case i = 2gives n= 103, k = 38,k + 2 = 40, and 

(7®g) = ( 1°j* ) = 6121818274330470189 14314 82520. 

This number does not occur again as a binomial coefficient. The next values of (n,k) are (713, 271) and (4894, 1868). 
Equation (1) has also been solved by Lind [4] . Hoggatt and Lind [3] have dealt with some related inequalities. 

hence 
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3. REMARKS 
The coefficients 

- ( "» : ; ) • ( - » ) - ( 7 ) 
give us infinitely many binomial coefficients occurring at least six times. This has also been noted in [1 , Theorem 3] . 
Since 3003 happens to be also a triangular number, one might hope that some more of these values might also be 
triangular. I first determined by calculation that 

Cs) 
was not triangular and later I determined that it did not occur as any other binomial coefficient. These determina-
tions are described below. I have not been able to discern any other patterns in the repetitions found. 

One might try to extend the pattern of Eq. (1) and try to find 
I " \ « [n + 1 \ = tn+2\ 
\ k+4 ) \ k + 3 ) \k+2 ) ' 

This would require two solutions of (1) with consecutive values of n and inspection of (6) shows this is impossible. 
The lemma is a special case of the general assertion that the solutions uj, i/; of 

UJ + v/y/5 = fu0 + v0^D Ha + b^/D)' 

both satisfy the same second-order recurrence relation: 

un+i = 2aun + (b2D -a2)un„i. 

(In our particular case: Fn+Q= 18 Fn - Fn-6.) I do not see whether the fact that the three basic solutions happen 
to neatly fit together into a single linear recurrence is a happy accident or a general phenomenon. The converse prob-
lem of determining which pairs of recurrence relations give all solutions of a Pell-like equation seems interesting but 
I have not examined it. 

4. THE COMPUTER SEARCH 

Two separate computer searches were made. First an ALGOL program was used to search up to 223 on the 

London Polytechnics' ICL 1905E. All the 4717 binomial coefficients ( £ \ with k>2, n > 2k and less than 223 

were formed by addition and stored in rows corresponding to the diagonals of Pascal's triangle. As each new coef-
ficient was created, it was compared with the elements in the preceding rows. Since each row is in increasing order, 
a simple binary search was done in each preceding row and the process is quite quick. All the repeated values given 
in the Introduction were already determined in this search. 

The second search was carried out using a FORTRAN program on the University of London Computer Centre's 
CDC 6600. Although the 6600 has a 60-bit word, it is difficult to use integers bigger than 248 and overflow occurs 
with such integers. Consequently, I was only able to search up to 248. There are about 24 x 106 triangular numbers 
and about 12 x 104 tetrahedral numbers up to this limit. It is impractical to store all of these, so the program had 
to be modified. Fortunately, the results of [2 ] , mentioned in the Introduction, implied that we did not have to com-
pare these two sets. I wrote a subroutine to determine if an integer N was triangular or tetrahedral. This estimates 
the J such that J(J + 1)/2= l\(hyJ= fsf(2N)] - / and then computes the succeeding triangular numbers until they 
equal or exceed N. Two problems of overflow arose. Firstly: if N is large, the calculation of the first triangular num-
ber to be considered, i.e., J(J + 1)/2, may cause an overflow when J(J + 1) is formed. This was resolved by examin-
ing J ( mod 2) and computing either (J/2)(J+ 1) or 

jm • 
Secondly: if N is larger than the largest triangular number less than 248, the calculation of the successive triangular 
numbers will produce an overflow before the comparison with N reveals that we have gone far enough. This was re-
solved by testing the index of the triangular numbers to see if overflow was about to occur. The test for tetrahedral 
numbers was similar, but requires testing J (mod 6). 
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The search then proceeded much as before. AN coefficients / n
k \ with k > 4 and n > 2k and less than 248 ware 

formed by addition and stored in rows. As each coefficient was formed, the subroutine was used to see if it was tri-
angular or tetrahedral and binary search was used to see if it occurred in a preceding row. 

S was rather startled that the second search produced no new results. The results 210,11628, 24310 and 3003 were 
refound, which gave me some confidence in the process, i reran the program with output of the searching steps and 
this indicated that the program works correctly. So I am reasonably sure of the results, although still startled. I hope 
someone can extend this to higher limits, say 259 and see if there are more repetitions. 

The calculation of N - ( j l 3 ] and the computational determination that it was not triangular were also compli-
cated by overflow, since N > 24i. First I attempted to compute only the 103rd row of the Pascal triangle by use of 

/ 103 \ = 104- k I 103 } 
{ k I k \k- 1 J 

using double precision real arithmetic. However, this showed inaccuracies in the units place, beginning with k~ 33. I 
then computed the entire triangle up to the 103rd row (mod 1014) by addition. I could then overlap the two results 
to get N. The double precision calculation had been accurate to 27 of the 29 places. 

I applied the idea of the subroutine to determine if N were triangular. This required some adjustments. Since 2N is 
bigger than 296, one cannot truncate V5/v7 to an integer. Instead sJ(N/2) was calculated, truncated to an integer, 
converted to a double precision real and then doubled. Then the process of the subroutine was carried out, working in 
double precision real form. N was found to lie about halfway between two consecutive triangular numbers. These re-
sults for N were independently checked by Cecil Kaplinsky using multiprecision arithmetic on an IBM 360. 

In a personal letter, D. H. Lehmer pointed out that one could determine that N was not triangular by noting its resi-
due (mod 13). Following up on this suggestion, I computed the Pascal triangle (mod/?) for small primes. Since ( n

k J 

(mod p) is periodic as a function of n [1, Theorem 38; 8; 9 ] , one can deduce that N ? f £ 1 for various k'% by ex-
amination of N (mod p) and the possible values of ( J M (mod p). For example, N = 4 (mod 13), but f "A £ 4 
(mod 13) for k = 2, 4 ,6 , 7, 8, 9, 10, 11, 12. Using the primes 13, 19, 29, 31, 37, 53, 59 and 61, one can exclude all 
possibilities for kf other than 39 and 40 and hence N occurs exactly six times. 

On the basis of the computer search and the scarcity of solutions of (1), I am tempted to make the following: 
CONJECTURE. No binomial coefficient is repeated more than 10 times. (Perhaps the right number is 8 or 12?) 
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