STRUCTURE OF THE REDUCED RESIDUE SYSTEM WITH COMPOSITE MODULUS

HUGOS. SUN
California State University, Fresno, California 93726

In [1] a group-theoretical technique was employed to prove the following:
Theorem 1. Let

$$
m=2^{e_{1}} p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}
$$

The congruence $x^{2} \equiv 1(\bmod m)$ has 2^{k} solutions if $e=0,1,2^{k+1}$ solutions if $e \geqslant 2$.
We extend this method to study the structure of the reduced residue system. Since the reduced residue system $\bmod m$ is isomorphic to the automorphism group of cyclic group of order n, we need several lemmas on automorphism groups. Because of the existence of primitive root $\bmod p^{n}$. we have
Lemma 1. The automorphism group $A\left(C_{p} n\right)$ of the cyclic group of order p^{n} is cyclic, and its order is

$$
\phi\left(p^{n}\right)=p^{n}-p^{n-1} .
$$

Lemma 2. $A\left(C_{2} n\right)$ is cyclic if $n=1,2$. If $n>2$,

$$
A\left(C_{2} n\right)=C_{2} n-2 \times C_{2} .
$$

Proof. The first statement is obvious. For $n>2$, the automorphism σ of $C_{2^{n}}$ defined by $\sigma(a)=a^{5}$ has order 2^{n-2}; in fact if $n=3$,

$$
\sigma(a)=a^{5}, \quad \sigma^{2}(a)=a,
$$

so $|\sigma|=2$. By induction on n,

$$
\sigma^{2^{n-2}}(a)=a^{5^{2^{n-2}}}=a^{\left(5^{2^{n-3}}\right)^{2}}=a^{\left(1+2^{n-1}+k 2^{n}\right)^{2}}=a^{1+2^{n}}=a \text { on } C_{2^{n}} \text {. }
$$

i.e., $\sigma^{2^{n-2}}=$ the identity automorphism on $C_{2^{n}}$ but $\sigma^{2 n-3}$ is not, so $|\sigma|=2^{n-2}$.

Next we show that every automorphism $a{ }_{0}^{2} C_{2 n}$ is a product of a power of σ and an automorphism τ of order 2.
Let a be defined by $a(a)=a^{t}$, where t is odd, we have

$$
a(a)=a^{(-1) \frac{t-1}{2} 5^{i}},
$$

i.e., $a(a)=\sigma^{j} \tau(a)$, where

$$
\tau(a)=a^{(-1) \frac{t-1}{2}} .
$$

Theorem 2. Let

$$
m=2^{e} p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{n}^{e_{n}},
$$

where $e \geqslant 0, e_{i} \geqslant 1$. The reduced residue system $\bmod m$ is generated by the powers of $n+k$ elements, with

$$
k= \begin{cases}0 & \text { if } e=0 \text { or } 1 \\ 1 & \text { if } e=2 \\ 2 & \text { if } e>2 .\end{cases}
$$

Proof.

$$
\begin{gathered}
C_{m}=C_{2^{e}} \times C_{p_{1}} e_{1} \times \ldots \times C_{p_{n}} e_{n} A\left(C_{m}\right)=A\left(C_{2^{e}}\right) \times A\left(C_{p_{1}} e_{1}\right) \times \cdots \times A\left(C_{p_{n}} e_{n}\right) \\
A\left(C_{2^{e}}\right)= \begin{cases}(1) & \text { if } e=0 \text { or } 1 \\
C_{2} & \text { if } e=2 \\
C_{2^{e-2}} \times C_{2} \text { if } e \geqslant 3 .\end{cases} \\
\text { REFERENCE }
\end{gathered}
$$

1. H. S. Sun, "A Group-Theoretical Proof of a Theorem in Elementary Number Theory," The Fibonacci Quarterly, Vol. 11, No. 2 (April 1973), pp. 161-162.
[Continued from P. 328.]

TABLE 3
Jacobi Symbols: $b=5$

a	(a / b)	(b / a)	$(a /-b)$	$(-b / a)$
-7	-1	-1	1	-1
-5	0	0	0	0
-3	-1	-1	1	-1
-1	1	1	-1	-1
1	1	1	1	1
3	-1	-1	-1	1
5	0	0	0	0
7	-1	-1	-1	1

TABLE 4
Jacobi Symbols: $b=7$

a	(a / b)	(b / a)	$(a /-b)$	$(-b / a)$
-7	0	0	0	0
-5	1	-1	-1	1
-3	1	1	-1	1
-1	-1	1	$-\frac{1}{2}$	$-\frac{1}{1}$
1	1	1	1	1
3	-1	1	-1	-1
5	-1	-1	-1	-1
7	0	0	0	0

Then

$$
\left(\frac{(a /-1)}{(b /-1)}\right)=1
$$

if and only if a is positive and/or b is positive; and
[Continued on P. 333.]

