STRUCTURE OF THE REDUCED RESIDUE SYSTEM WITH COMPOSITE MODULUS

HUGOS, SUN

California State University, Fresno, California 93726

In [1] a group-theoretical technique was employed to prove the following:

Theorem 1. Let

$$m = 2^e p_1^{e_1} \cdots p_k^{e_k}$$

The congruence $x^2 \equiv 1 \pmod{m}$ has 2^k solutions if $e = 0, 1, 2^{k+1}$ solutions if $e \ge 2$.

We extend this method to study the structure of the reduced residue system. Since the reduced residue system mod m is isomorphic to the automorphism group of cyclic group of order n, we need several lemmas on automorphism groups. Because of the existence of primitive root mod p^n , we have

Lemma 1. The automorphism group $A(C_p n)$ of the cyclic group of order p^n is cyclic, and its order is

$$\phi(p^n) = p^n - p^{n-1}$$

Lemma 2. $A(C_2 n)$ is cyclic if n = 1, 2. If n > 2, $A(C_2n) = C_2n - 2 \times C_2.$

Proof. The first statement is obvious. For n > 2, the automorphism σ of C_{2^n} defined by $\sigma(a) = a^5$ has order 2^{n-2} ; in fact if n = 3,

$$\sigma(a) = a^5, \qquad \sigma^2(a) = a$$

so $|\sigma| = 2$. By induction on *n*,

$$\sigma^{2^{n-2}}(a) = a^{5^{2^{n-2}}} = a^{(5^{2^{n-3}})^2} = a^{(1+2^{n-1}+k2^n)^2} = a^{1+2^n} = a \text{ on } C_{2^n},$$

i.e., $\sigma^{2^{n-2}}$ = the identity automorphism on C_{2^n} but $\sigma^{2^{n-3}}$ is not, so $|\sigma| = 2^{n-2}$. Next we show that every automorphism a on C_{2^n} is a product of a power of σ and an automorphism τ of order 2. Let a be defined by $a(a) = a^t$, where t is odd, we have

$$a(a) = a^{(-1)\frac{t-1}{2}5^{i}}$$

i.e., $\alpha(a) = \sigma^{i} \tau(a)$, where

$$\tau(a) = a^{(-1)} \frac{t-1}{2}$$

Theorem 2. Let

$$m = 2^{e} p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{n}^{e_{n}},$$

where $e \ge 0$, $e_i \ge 1$. The reduced residue system mod m is generated by the powers of n + k elements, with

$$k = \begin{cases} 0 & \text{if } e = 0 & \text{or } 1 \\ 1 & \text{if } e = 2 \\ 2 & \text{if } e > 2. \end{cases}$$

Proof.

$$C_{m} = C_{2^{e}} \times C_{p_{1}}e_{1} \times \dots \times C_{p_{n}}e_{n}A(C_{m}) = A(C_{2^{e}}) \times A(C_{p_{1}}e_{1}) \times \dots \times A(C_{p_{n}}e_{n})$$
$$A(C_{2^{e}}) = \begin{cases} (1) & \text{if } e = 0 \text{ or } 1\\ C_{2} & \text{if } e = 2\\ C_{2^{e-2}} \times C_{2} & \text{if } e \ge 3. \end{cases}$$

REFERENCE

1. H. S. Sun, "A Group-Theoretical Proof of a Theorem in Elementary Number Theory," *The Fibonacci Quarterly*, Vol. 11, No. 2 (April 1973), pp. 161–162.

[Continued from P. 328.]

TABLE 3

Jacobi Symbols: b = 5

а	(a/b)	(b/ a)	(a/b)	(b/a)
-7	-1	-1	1	-1
-5	0	0	0	0
-3	-1	-1	1	-1
-1	1	1	_1	-1
1	1	1	1	1
3	-1	-1	-1	1
5	0	0	0	0
7	-1	-1	- 1	1

TABLE 4

Jacobi Symbols: b = 7

a	(a/b)	(b/a)	(a/b)	(—b/a)
-7	0	0	、 O	0
-5	1	-1	-1	1
-3	1	1	-1	1
-1	-1	1	1	1
1	1	1	1	1
3	-1	1	-1	-1
5	-1	-1	-1	-1
7	0	0	0	0

Then

 $\left(\begin{array}{c} \frac{(a/-1)}{(b/-1)} \end{array}\right) = 1$

if and only if a is positive and/or b is positive; and

[Continued on P. 333.]

330