REFERENCES

1. A. H. Beiler, "Consecutive Hypotenuses of Pythagorean Triangles," UMT 74, Math. Comp., Vol. 22, 1968, pp. 690-692.
2. Thomas H. Southard, Addition Chains for the First n Squares, Center Numerical Analysis, CNA-84, Austin, Texas, 1974.
3. Daniel Shanks, "The Second-Order Term in the Asymptotic Expansion of $B(x)$," Math. Comp., Vol. 18, 1964, pp. 75-86.
4. Edmund Landau, "Uber die Einteilung, usw.," Archiv der Math. and Physik (3), Vol. 13, 1908, pp. 305-312.
[Continued from P. 318.]

$$
\begin{aligned}
& (1 /-1)=1 \\
& (-1 / 1)=1 \\
& (1 / 1)=1 .
\end{aligned}
$$

The second entry of the Extended Jacobi Symbol is multiplicative by definition; it will be proved in the corollaries that both entries are also periodic.
The following results are easily derived:
Explicitly,

$$
\begin{gathered}
(0 / 1)=1, \\
(0 / b)=0 \text { if } b \neq 1, \\
(0 /-b)=0 \text { if }-b \neq 1, \\
(2 / \pm b)=(-1)^{\left(b^{2}-1\right) / 8}, \\
(-2 / b)=(-1)^{\left(b^{2}+4 b-5\right) / 8}, \\
(-2 /-b)=(-1)^{\left(b^{2}-4 b-5\right) / 8 .}
\end{gathered}
$$

If $a \neq 0$, then

$$
\begin{gathered}
\left(-a^{2} /-1\right)=-1 ; \\
\left(-1 /-b^{2}\right)=-1 ; \\
(-a / 1)=1, \\
(a /-1)=(a /-1) \text { (see below), } \\
(-a /-1)=-(a /-1) ; \\
(1 / b)=1, \\
(-1 / b)=(-1)^{(b-1) / 2}, \\
(1 /-b)=1, \\
(-1 /-b)=(-1)^{(b+1) / 2}
\end{gathered}
$$

