$p \equiv 13$ or $17(\bmod 20)$: The residue $1 / 2$ does not appear. Exactly one square root of -1 appears.
$p \equiv 1 \operatorname{or} 9(\bmod 20)$ and $\beta(p)=1$ or 2 : The residue $1 / 2$ appears. Both square roots of -1 and the residues

$$
\frac{1 \pm \sqrt{5}}{2}(\bmod p)
$$

do not appear.
$p \equiv 1$ or $9(\bmod 20)$ and $\beta(p)=4$: The residues $1 / 2$ and

$$
\frac{1 \pm \sqrt{5}}{2}(\bmod p)
$$

do not appear. Exactly one square root of $-1(\bmod p)$ appears.

REFERENCE

1. John H. Halton, "On the Divisibility Properties of Fibonacci Numbers," The Fibonacci Quarterly, Vol. 4, No. 3 (Oct. 1966), pp. 217-241.
[Continued from P. 321.]
If $(a, b)=1$, then

$$
\begin{gathered}
\left(a^{2} / b^{2}\right)=1, \\
\left(-a^{2} / b^{2}\right)=1, \\
\left(a^{2} /-b^{2}\right)=1, \\
\left(-a^{2} /-b^{2}\right)=-1 ; \\
\left(a / b^{2}\right)=1, \\
\left(-a / b^{2}\right)=1, \\
\left(a /-b^{2}\right)=(a /-1), \\
\left(-a /-b^{2}\right)=-(a /-1) ; \\
\left(a^{2} / b\right)=1, \\
\left(-a^{2} / b\right)=(-1 / b), \\
\left(a^{2} /-b\right)=1, \\
\left(-a^{2} /-b\right)=-(-1 / b) ; \\
(a / b)=(a / b), \\
(-a / b)=(a / b)(-1 / b), \\
(a /-b)=(a / b)(a /-1), \\
(-a /-b)=-(a / b) / a /-1)(-1 / b) .
\end{gathered}
$$

It remains to evaluate $(a /-1)$. Since $\left(-a^{2} /-1\right)=-1$, therefore $(a /-1)=-(-a /-1)$. This means that $(a /-1)$ cannot be defined in terms of an integer. Either $(a /-1)=1$ if and only if a is positive or $(a /-1)=1$ if and only if a is negative. The choice of alternative is dictated by the fact that $(1 /-1)=1$ and $(-1 /-1)=-1$. Therefore, $(a /-1)=1$ if and only if a is positive.
(See Tables 1 through 4.)
[Continued on P. 328.]

