whence we conclude that

$$\sum_{r=0}^{n} a_{n,r} = f_n + 2f_{n-1} + f_{n-2} .$$

Using the recurrence

 $f_{n+1} = f_n + f_{n-1}$,

the right-hand side of (17) simplifies to f_{n+2} , which is the desired result, q.e.d.

REFERENCES

1. F. Hering, "A Problem on Inequalities," Amer. Math. Monthly, Vol. 78, No. 3, March (1971), pp. 275-276.

2. C. L. Liu, Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.

3. J. Riordan, Combinatorial Identities, Wiley, New York, 1968.

[This paper was received June 18, 1973; revised August 23, 1973.]

[Continued from P. 324.]

TABLE 1

Jacobi Symbols: b = 1

а	(a/b)	(b/a)	(a/b)	(b/a)
-7	1	1	-1	1
5	1	1	-1	-1
-3	1	1	-1	1
-1_	1	1	1	1_
1	1	1	1	1
3	1	1	1	-1
5	1	1	1	1
7	1	1	1	-1

а	(a/b)	(b/a)	(a/—b)	(—b/a)			
-7	-1	-1	1	-1			
-5	1	-1	-1	1			
-3	0	0	0	0			
-1	-1	1	1	-1			
1	1	1	1	1			
3	0	0	0	0			
5	-1	-1	-1	-1			
7	1	-1	1	1			

[Continued on P. 330.]

10.00

DEC. 1975