It then follows that the asymptotic density of C, and hence B, is 1 . We have thus proved the following theorem.
Theorem 2. The probability of a random choice of a base $g \geqslant 3$ not yielding a solution tothe Generalized Problem is 1 .

In light of this theorem it seems that the choice of the base 10 in the problem as originally stated was a wise choice! We leave as an entertaining problem for the reader the question of the identity of the bases g less than 100 for which there is a solution.
We have shown that in some sense A has far fewer elements than B. But is A finite or infinite? If $g \equiv 3(\bmod 4)$ is a prime and $p=g^{2}-g-1$ is also a prime, then $p \equiv 1(\bmod 4)$ and

$$
\left(\frac{q}{p}\right)=\left(\frac{p}{g}\right)=\left(\frac{-1}{g}\right)=-1 .
$$

Hence $g^{t} \equiv-1(\bmod p)$ has a solution and $g \in A$. We note that Schinzel's Conjecture H [2] implies there are infinitely many primes $g \equiv 3(\bmod 4)$ for which $g^{2}-g-1$ is also prime. Hence if this famous conjecture is true it follows that our set A is infinite.

REFERENCES

1. J. A. Hunter, Problem 301, J. Recreational Math., 6 (4), Fall 1973, p. 308.
2. A. Schinzel and W. Sierpinski, "Sur certaines hypothèses concernant les nombres premiers," Acta Arith. 4 (1958), pp. 185-208.
[Continued from P. 330.]

*

$$
\left(\frac{(-1 / a)}{(-1 / b)}\right)=(-1)^{(a-1)(b-1) / 4}=1
$$

if and only if $a \equiv 1(\bmod 4)$ and $/$ or $b \equiv 1(\bmod 4)$.
If $A= \pm 1$ and $B= \pm 1$ are logical variables, then the sixteen functions of those variables are given by $\pm 1, \pm A, \pm B$, $\pm A B$ and $\pm(\pm A / \pm B)$. This is a result that cannot be obtained with the definition $(-1 /-1)=1$. If $A=(-1 / b)$ and $B=(-2 / b)$, then the logical functions of A and B give the congruence of b modulo 8 . For example,

$$
(A / B)=(-1)^{\left(b^{3}-b^{2}+7 b-7\right) / 16}=1
$$

if and only if $b \equiv 1,3$ or $5(\bmod 8)$. The function -1 is a null function which cannot occur.
If $b= \pm p_{1} p_{2} \cdots p_{k}$ with p_{i} not necessarily distinct, and n is the number of p_{i} for which $(a / p)=-1$, then

$$
(a b)=\left(\frac{(a /-1)}{(b /-1)}\right)(-1)^{n}
$$

Theorem. If $a b \equiv 1(\bmod 2)$ and $(a, b)=1$, then

$$
(a / b)(b / a)=\left(\frac{(a /-1)}{(b /-1)}\right)\left(\frac{(-1 / a)}{(-1 / b)}\right)
$$

In other words,

$$
(a / b)(b / a)=1
$$

if and only if $((a$ is positive and/or b is positive) and $(a \equiv 1(\bmod 4)$ and $/$ or $b \equiv 1(\bmod 4)))$ or $(a$ is negative and b is negative and $a \equiv-1(\bmod 4)$ and $b \equiv-1(\bmod 4))$.
Proof.

$$
((-1 / a) /(-1 / b))=-1
$$

if and only if
[Continued on P. 336.]

$$
\begin{aligned}
& (-1 / a)=(-1 / b)=-1 ; \\
& ((-1 /-a) /(-1 / b))=-1
\end{aligned}
$$

