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It then follows that the asymptotic density of C, and hence B, is 1. We have thus proved the following theorem. 
Theorem 2. The probability of a random choice of a base# > 3 not yielding a solution tothe Generalized Prob-

lem is 1. 
In light of this theorem it seems that the choice of the base 10 in the problem as originally stated was a wise choice! 

We leave as an entertaining problem for the reader the question of the identity of the basest less than 100 for which 
there is a solution. 

We have shown that in some sense A has far fewer elements than B. But is A finite or infinite? If g = 3 (mod 4) is a 
prime and p - g2 - g - \ is also a prime, then p = 1 (mod 4) and 

[i)-(t)-{?)•-'• 
Hence gl = - 1 (mod p) has a solution and g<= A. We note that Schinzel's Conjecture H [2] implies there are infin-
itely many primes # = 3 (mod 4) for which g2 - g - 1 is also prime. Hence if this famous conjecture is true it follows 
that our set A is infinite. 
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[Continued from P. 330.: 

I (-1/h) 1 ( 1J (a-1)(h-1)/4 _ = / 
if and only i fa = 1 (mod 4) and/or£ = 1 (mod 4). 

If A = ±1 and B = ±1 are logical variables, then the sixteen functions of those variables are given by ±1, ±A +B 
±AB and ±(±A/±B). This is a result that cannot be obtained with the definition (-1/-1) = I If A = (-1/b) and 
B - (-2/b), then the logical functions of A and B give the congruence of b modulo 8. For example 

(A/B) = (_f)(b'-b*+7b-7)/16^ , 

if and only if b = 1, 3 or 5 (mod 8). The function - 1 is a null function which cannot occur. 

Wb = ±piP2 -Pk with pi not necessarily distinct, and n is the number of /?,- for which (a/p) =-1, then 

Theorem. If ab = 1 (mod 2) and [a,h) = l , then 

<»»»•( ffltm) • 
In other words, 

(a/bHb/a) = 1 
if and only if ((a is positive and/or b is positive) and (a = 1 (mod 4) and/or b = 1 (mod 4))) or (a is negative and b is 
negative and a = - 1 (mod 4) and b = - 1 (mod 4)). 

Proof. 
((-1/a}/(-J/b)t = -1 

if and only if 
(-1/a) = (-1/b) = -1; 

[Continued on P. 336.] ((-1/-a)/(-1/h)) = - / 


