is LD by Theorem 2-(i), and so F_{n} is LD by Theorem 2-(iv).
Theorem 3 is easily extended to other recurrence sequences.
It should also be noted that examples can be constructed which show that

$$
\left\{a_{n}\right\} \quad \text { and } \quad\left\{\beta_{n}\right\}
$$

LD does not imply that any of

$$
\left\{a_{n}^{1 / k}\right\}, \quad\left\{a_{n} \beta_{n}\right\}, \quad \text { or } \quad\left\{a_{n}+\beta_{n}\right\}
$$

are LD. It might be interesting to obtain necessary and/or sufficient conditions for these implications to hold.

REFERENCES

1. J. L. Brown, Jr., and R. L. Duncan, "Modulo One Distribution of Certain Fibonacci-Related Sequences," The Fibonacci Quarterly, Vol. 10, No. 3 (April 1972), pp. 277-280.
2. R. Burnby and E. Ellentuck, "Finitely Additive Measures and the First Digit Problem," Fundamenta Mathematicae, 65, 1969, pp. 33-42.
3. Ivan Niven, "Irrational Numbers," Carus Mathematical Monograph No. 11, The Mathematical Association of America, John Wiley and Sons, Inc., New York.
4. R.S. Pinkham, "On the Distribution of First Significant Digits," Annals of Mathematical Statistics, 32, 1961, pp. 1223-1230.
[Continued from P. 333.]
if and only if

$$
\begin{aligned}
& (-1 / a) \neq(-1 / b)=-1 ; \\
& ((-1 / a) /(-1 /-b))=-1
\end{aligned}
$$

if and only if

$$
\begin{aligned}
(-1 / a) \neq(-1 / b) & =1 ; \\
((-1 /-a) /(-1 /-b)) & =-1
\end{aligned}
$$

if and only if

$$
(-1 / a)=(-1 / b)=1
$$

Now stipulate that

$$
(a /-1)=(b /-1)=1
$$

Then, by the classic Law of Quadratic Reciprocity,

$$
\begin{equation*}
(a / b)(b / a)=((-1 / a) /(-1 / b)) \tag{1}
\end{equation*}
$$

But

$$
(-a / b)=(a / b)(-1 / b)
$$

and

$$
(b /-a)=(b / a)(b /-1)
$$

Since $(b /-1)=1$, therefore
[Continued on P. 339.]

