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is LD by Theorem 2-(i), and so Fn is LD by Theorem 2-(iv). 
Theorem 3 is easily extended to other recurrence sequences. 
It should also be noted that examples can be constructed which show that 

| an j. and \ ft, } 
LD does not imply that any of 

{a1
n

/k}, \an$n], or \an + &n) 

are LD. It might be interesting to obtain necessary and/or sufficient conditions for these implications to hold. 
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[Continued from P. 333.] 

if and only if 
l-1/a) 1 (-1/h) = -1; 

<(-1M/(-1/-b)) * -1 
if and only if 

(-1/a) t (-1/h) = 1; 
((-1/-a)/(-1/-b» = -1 

if and only if 
(-1/a) = (-1/h) = 1. 

Now stipulate that 
(a/-1) = (b/-1) = 1. 

Then, by the classic Law of Quadratic Reciprocity, 

(1) (a/b)(b/a) = ((-1/a)/(-1/b)). 
But 

(-a/h) = (a/b)(-1/b) 
and 

(b/-a) = (b/a)(b/-1). 

Since (h/-1) = 1, therefore 

[Continued on P. 339.] 


