Since $(a, b)=1$ the second equation of (12) yields either
(14)
or
(15)

Equations (13) and (14) yield

$$
\begin{array}{ll}
b= \pm t^{2}, & a=\mp 5 a^{2} \\
b= \pm 5 t^{2}, & a=\mp s^{2} .
\end{array}
$$

$$
\left(+10 s^{2} \pm t^{2}\right)^{2}-5 t^{4}=4
$$

By (5), the only integer solutions of this equation occur for $t=0,1$ or 12 . But none of these values of t yield a value for s. Equations (13) and (15) yield

$$
\left.\digamma+2 s^{2} \pm 5 t^{2}\right)^{2}-125 t^{4}=4
$$

By Lemma $2, t=0, s=1, a= \pm 1, b=0, L_{n}=1$. The proof is complete.

REFERENCES

1. J. H. E. Cohn, "On Square Fibonacci Numbers," Journal London Math. Soc., 39 (1964), pp. 537-540.
2. J. H. E. Cohn, "Square Fibonacci Numbers, Etc.," The Fibonacci Quarterly, Vol. 2, No. 2 (April 1964), pp. 109113.
3. J. H. E. Cohn, "Lucas and Fibonacci Numbers and Some Diophantine Equations," Proc. Glasgow Math. Assoc., 7 (1965), pp. 24-28.
4. R. Finkelstein, "On Fibonacci Numbers which are One More than a Square," Journal Für dïe reine und angew Math, 262/263 (1973), pp. 171-182.
[Continued from P. 339.]

Since

$$
(a /-1)=(b /-1)=1
$$

therefore

$$
\begin{aligned}
(-a /-b)(-b /-a) & =(a / b)(b / a)(-1 / a)(-1 / b) \\
& =((-1 / a) /(-1 / b))(-1 / a)(-1 / b) \\
& =1
\end{aligned}
$$

if and only if

$$
(-1 / a)=(-1 / b)=1
$$

Therefore,
(4)

$$
(-a /-b)(-b /-a)=-((-1 /-a) /(-1 /-b))
$$

From (1), (2), (3) and (4), it can be seen that the theorem is true for all sixteen combinations of

$$
(a /-1)= \pm 1, \quad(b /-1)= \pm 1, \quad(-1 / a)= \pm 1 \quad \text { and } \quad(-1 / b)= \pm 1
$$

Corollary 1. If $a \equiv 0$ or $1(\bmod 2), b \equiv 1(\bmod 2)$ and $(a, b)=1$, and if $a_{1} \equiv a_{2}(\bmod b)$, then

$$
\left(a_{1} a_{2} / b\right)=\left(\frac{\left(a_{1} a_{2} /-1\right)}{(b /-1)}\right)
$$

In other words, $\left(a_{1} a_{2} / b\right)=1$ if and only if $a_{1} a_{2}$ is positive and/or b is positive.
[Continued on P. 344.]

