$$
Q=\left(\begin{array}{ll}
b & 1 \\
1 & 0
\end{array}\right), \quad a^{n}=\left(\begin{array}{ll}
U_{n+1} & U_{n} \\
U_{n} & U_{n-1}
\end{array}\right)
$$

Since det $Q^{n}=(\operatorname{det} Q)^{n}=(-1)^{n}$, we have

$$
\begin{equation*}
U_{n+1} U_{n-1}-U_{n}^{2}=(-1)^{n} \tag{34}
\end{equation*}
$$

Using $Q^{m+n}=Q^{m} Q^{n}$ and equating elements in the upper left gives us

$$
\begin{gather*}
U_{m+n+1}=U_{m+1} U_{n+1}+U_{m} U_{n}  \tag{35}\\
U_{2 n+1}=U_{n+1}^{2}+U_{n}^{2}
\end{gather*}
$$

Many other identities can be found in the same way. Note that the characteristic polynomial of $Q$ is $x^{2}-b x-1=0$. Summation identities can also be generalized [1], [2] , as, for example,

$$
\begin{gather*}
U_{0}+U_{1}+U_{2}+\cdots+U_{n}=\left(U_{n}+U_{n+1}-1\right) / b  \tag{37}\\
V_{0}+V_{1}+V_{2}+\cdots+V_{n}=\left(V_{n}+V_{n+1}+b-2\right) / b \tag{38}
\end{gather*}
$$

$$
\begin{equation*}
U_{0}^{2}+U_{1}^{2}+U_{2}^{2}+\cdots+U_{n}^{2}=\left(U_{n} U_{n+1}\right) / b \tag{39}
\end{equation*}
$$

The reader is left to see what other identities he can find which hold for the general sequence.

## REFERENCES

1. Carl E. Serkland, The Pell Sequence and Some Generalizations, Unpublished Master's Thesis, San Jose State University, San Jose, California, August, 1972.
2. A. F. Horadam, "Pell Identities," The Fibonacci Quarterly, Vol. 9, No. 3 (April 1971), pp. 245-252, 263.
3. Marjorie Bicknell, "A Primer for the Fibonacci Numbers: Part VII, An Introduction to Fibonacci Polynomials and Their Divisibility Properties," The Fibonacci Quarterly, Vol. 8, No. 4 (Oct. 1970), pp. 407-420.
4. Joseph A. Raab, "A Generalization of the Connection Between the Fibonacci Sequence and Pascal's Triangle," The Fibonacci Quarterly, Vol. 1, No. 3 (Oct. 1963), pp. 21-31.

## * *

[Continued from P. 344.]

Corollary 2. If $a b \equiv 1(\bmod 2)$ and $(a, b)=1$, and if $b_{1} \equiv b_{2}(\bmod 2 a)$, then

$$
\left(a / b_{1} b_{2}\right)=\left(\frac{(-1 / a)}{\left(-1 / b_{1} b_{2}\right)}\right) .
$$

In other words,

$$
\left(a / b_{1} b_{2}\right)=1
$$

if and only if $a \equiv 1(\bmod 4)$ and $/ \operatorname{or} b_{1} b_{2} \equiv 1(\bmod 4)$.
Proof. From ( $\left.b_{1} b_{2} / a\right),\left(-b_{1} b_{2} / a\right),\left(b_{1} b_{2} /-a\right)$ and $\left(-b_{1} b_{2} /-a\right)$, the following results can be obtained by quadratic reciprocity:

