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a = I h M an - i Un+1 Un\ 

Sincedet£2" = (6etQ)n = (- If, we have 
(34) Un+1Un^-U2

n- (~1)n . 

Using Qm+n = QmQn and equating elements in the upper left gives us 

(35) Um+n+1 = Um+lUn+1 + UmUn 

(36) U2n+1 = Ul+f + Ul . 

Many other identities can be found in the same way. Note that the characteristic polynomial of Q \sx2 - bx - 1 = 0. 
Summation identities can also be generalized [1 ] , [2 ] , as, for example, 

(37) Ui+U^Ut*.» + Un = (Un + Un+1 - 1)/b 

(38) Vt + Vx + V2+~+Vn = (V„ + Vn+1+b-2)/b 

(39) U2
0 +U\+ U\ + ~+U*n * (UnUnH)/b . 

The reader is left to see what other identities he can find which hold for the general sequence. 
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[Continued from P. 344.] 

Corollary 2. \Ub = \ (mod 2) and (a,b) = 1, and if bx =b2 (mod 2a), then 

"•"•>•<>> - ( 7 ^ k > ) • 
In other words, 

(a/hxbj = 1 

if and only if a = 1 (mod 4) and/or blb2 = 1 (mod 4). 
Proof. From (hlb2/a), (-b1b2/a), (hxbj-a) and (-bxbj-a), the following results can be obtained by quadra-

tic reciprocity: 

[Continued on P. 384.] 


