WONG, C. K. "A Generalized Pascal's Triangle," Vol. 13, No. 2, pp. 134-136. Co-author, T. W. Maddocks.
WOO, NORMAN. "Non-Basic Triples," Vol. 13, No. 1, pp. 56-58.
WULCZYN, GREGORY. "Minimum Solutions to $x^{2}-D y^{2}= \pm 1$," Vol. 13, No. 4, pp. 307-311. Problem Proposed: H-247, Vol. 13, No. 1, p. 89. Problems Solved: B-277, Vol. 13, No. 1, p. 96; B-278, Vol. 13, No. 1, p. 96; B-281, Vol. 13, No. 2, p. 192; B-282, Vol. 13, No. 2, p. 192; B-283, Vol. 13, No. 2, p. 192; H-221, Vol. 13, No. 3, p. 284; B-288, Vol. 13, No. 3, p. 287; B-288, Vol. 13, No. 3, p. 287; B-290, Vol. 13, No. 3, p. 288; B-292, Vol. 13, No. 4, p. 374; B-294, Vol. 13, No. 4, p. 375; B-297, Vol. 13, No. 4, p. 377.

ZEITLIN, DAVID. Problems Solved: B-277, Vol. 13, No. 1, p. 96; B-278, Vol. 13, No. 1, p. 96; B-286, Vol. 13, No. 3, p. 286; B-288, Vol. 13, No. 3, p. 287; B-289, Vol. 13, No. 3, p. 287; B-192, Vol. 13, No. 3, p. 288; B-297, Vol. 13, No. 4, p. 377.
*
[Continued from P. 349.]

THE GENERAL LAW OF QUADRATIC RECIPROCITY

If $\left(-1 / b_{1} b_{2}\right)=1$, then

$$
\begin{gathered}
\left(a / b_{1} b_{2}\right)=1 \\
\left(-a / b_{1} b_{2}\right)=1 \\
\left(a /-b_{1} b_{2}\right)=(a /-1), \\
\left(-a /-b_{1} b_{2}\right)=-(a /-1) ;
\end{gathered}
$$

If $\left(-1 / b_{1} b_{2}\right)=-1$, then

$$
\begin{gathered}
\left(a / b_{1} b_{2}\right)=(-1 / a), \\
\left(-a / b_{1} b_{2}\right)=-(-1 / a), \\
\left(a /-b_{1} b_{2}\right)=(a /-1)(-1 / a), \\
\left(-a /-b_{1} b_{2}\right)=(a /-1)(-1 / a) .
\end{gathered}
$$

REFERENCES

1. Leonard Eugene Dickson, Introduction to the Theory of Numbers, University of Chicago, 1929; Dover Publications, Inc., 1957.
2. William Judson LeVeque, Topics in Number Theory, Vol. 1, Addison-Wesley, Reading, Mass., 1956.
