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Method XI. For yet another method see A. G. Shannon's solution in the April 1976 Admwiced Problem Section 
solution to H-237. 
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Then the sequence 

is u.d. mod 1. 

Proof. We have 

(wn) = (\oqHnH*) 

which tends to 

as/7 -*°° for 

• Hn+1 , Hn+1 
Wn+1-Wn = log -77— "Hog -7J17-

2 l o g l ^ 

Mn+1 „ qFn+PFn-1 ~ q(Fn/Fn^)+p Fn-1 

goes to 
qFn.1 +pFn„2 q(Fn„f/Fn-2) +P Fn-2 

1 + x / T 
2 

as/7 -»°° 
Theorem 3. Let/7, q, /?*, q*, Hn and H% have the same meaning as in Theorem 2. Then the sequence 

(xn) = (\Q%(Hn + H*)) 

is u.d. mod 1. 
Proof. By the definitions of Hn and H„ we have 

Hn + H* = (q+qVFn-j + (p + p*)Fn.2 (n > 3) 

and so we see that 
» nu ^u* urn +u*n - , n n (q+q*)Fn + (P+P*)Fn-1 *n+l-xn = log ((Mn+1+Hn+1)/(Hn+Hn)) - log ^ - — — — — — — — — , 

[Continued on Page 281.] 


