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Method XI. For yet another method see A. G. Shannon's solution in the April 1976 Adwenced Problem Section
solution to H-237.
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Then the sequence
(wn) = flogH,Hy)

is u.d. mod 1.
Proof. We have
Hnp+1 H*+1
Wnt1— Wy = log /’_;: + log —/’_’/;
which tends to _
2 log E%S—
as n — o= for
Hnt1 __ gFptpFa1_ _ alfa/Fpo1}*p  Fp-g
Hp gFn-1+pFp-2 glFp-1/Fn-2)+p Fn-2
goes to _
1+/5
2
asn — oo

Theorem 3. Letp, g, p* g* H, and H; have the same meaning as in Theorem 2. Then the sequence
(xn) = Nog(H,+Hy )
isu.d. mod 1.
Proof. By the definitions of #,, and H,, we have
Hp+Hpy = (g+q*)Fp_q+(p+p*)Fp2 (n = 3)

and so we see that

(g +g*)Fn+(p+p*)Fp-yq
Xn#1=Xn =109 ((Hps1+ Haer)/ (Hy + Hp)) = log (g +q*)F _nf+(p ¥p*)Fpo

[Continued on Page 281.]



