## SET PARTITIONS

## L. CARLITZ*

Duke University, Durham, North Carolina 27706

1. Let $Z_{n}$ denote the set $\{1,2, \cdots, n\}$. Let $S(n, k)$ denote the number of partitions of $Z_{n}$ into $k$ non-empty subsets $B_{1}, \cdots, B_{k}$. The $B_{k}$ are called blocks of the partition. Put

$$
n_{j}=\left|B_{j}\right| \quad(j=1,2, \cdots, k),
$$

so that
(1.1)

$$
n_{1}+n_{2}+\cdots+n_{k}=n
$$

It is convenient to introduce a slightly different notation. Put

$$
(1.2)
$$

where

$$
n=k_{1} \cdot 1+k_{2} \cdot 2+\cdots+k_{n} \cdot n
$$

and

$$
k_{j} \geqslant 0 \quad(j=1,2, \cdots, n)
$$

(1.3)

$$
k_{1}+k_{2}+\cdots+k_{n}=k
$$

We call (1.2) a number partition of the integer $n$; the condition (1.3) indicates that the partition is into $k$ parts, not necessarily distinct. For brevity (1.2) is often written in the form

$$
\begin{equation*}
n=1^{k_{1}} 2^{k_{2}} \ldots n^{k_{n}} \tag{1.4}
\end{equation*}
$$

Corresponding to the partition (1.2) we have

$$
\begin{equation*}
-\frac{n!}{(1!)^{k_{1}}(2!)^{k_{2}} \cdots(n!)^{k_{n}}} \frac{1}{k_{1}!k_{2}!\cdots k_{n}!} \tag{1.5}
\end{equation*}
$$

set partitions. Hence
where the summation is over all nonnegative $k_{1}, k_{2}, \cdots, k_{n}$ satisfying (1.2) and (1.13). Thus

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sum_{k=0}^{n} S(n, k) z^{k} & =\sum_{k_{1}, k_{2}, \cdots=0}^{\infty}\left(\frac{x}{1!}\right)^{k_{1}}\left(\frac{x^{2}}{2!}\right)^{k_{2}} \cdots \frac{z^{k_{1}}}{k_{1}!} \frac{z^{k_{2}}}{k_{2}!} \cdots \\
& =\sum_{k_{1}, k_{2}, \cdots=0}^{\infty} \frac{1}{k_{1}!}\left(\frac{x z}{1!}\right)^{k_{1}} \frac{1}{k_{2}!}\left(\frac{x^{2} z}{2!}\right)^{k_{2}} \cdots \\
& =\exp \left(x z+\frac{x^{2} z}{2!}+\frac{x^{3} z}{3!}+\cdots\right)
\end{aligned}
$$

and we get the well known formula

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} S(n, k) \frac{x^{n}}{n!} z^{k}=\exp \left(z\left(e^{x}-1\right)\right) \tag{1.7}
\end{equation*}
$$

*Supported in part by NSF grant GP-17031.

It is clear from (1.7) that
(1.8)

$$
\sum_{n=0}^{\infty} \operatorname{S}(n, k) \frac{x^{n}}{n!}=\frac{1}{k!}\left(e^{x}-1\right)^{k}
$$

which implies

$$
\begin{equation*}
S(n, k)=\frac{1}{k!} \sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} j^{n}, \tag{1.9}
\end{equation*}
$$

the familiar formula for a Stirling number of the second kind.
Next put

$$
\begin{equation*}
A_{n}(z)=\sum_{k=0}^{n} S(n, k) z^{k} \tag{1.10}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
A_{n}=A_{n}(1)=\sum_{k=0}^{n} S(n, k) . \tag{1.11}
\end{equation*}
$$

The polynomial $A_{n}(z)$ is called a single-variable Bell polynomial. The number $A_{n}$ is evidently the total number of set partitions of $Z_{n}$.

From (1.7) and (1.10) we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} A_{n}(z) \frac{x^{n}}{n!}=\exp \left(z\left(e^{x}-1\right)\right) \tag{1.12}
\end{equation*}
$$

Differentiation with respect to $x$ gives

$$
\begin{equation*}
A_{n+1}(z)=z \sum_{r=0}^{\infty}\binom{n}{r} A_{r}(z) \tag{1.13}
\end{equation*}
$$

while differentiation with respect to $z$ gives

$$
\begin{equation*}
A_{n}^{\prime}(z)=\sum_{r=0}^{n-1}\binom{n}{r} A_{r}(z) \tag{1.14}
\end{equation*}
$$

Hence
(1.15)

$$
A_{n+1}(z)=z A_{n}(z)+z A_{n}^{\prime}(z) .
$$

By (1.10), (1.15) is equivalent to the familiar recurrence

$$
S(n+1, k)=S(n, k-1)+k S(n, k)
$$

If we take $z=1$ in (1.13) we get

$$
\begin{equation*}
A_{n+1}=\sum_{r=0}^{n}\binom{n}{r} A_{r} \quad\left(A_{0}=1\right) \tag{1.16}
\end{equation*}
$$

This recurrence can be proved directly in the following way. Consider a partition of $Z_{n+1}$ into $k$ blocks $B_{1}, B_{2}$, $\cdots, B_{k}$. Assume that the element $n+1$ is in $B_{k}$ and let $B_{k}$ contain $r$ additional elements, $r \geqslant 0$. Keeping these $r$ elements fixed it is clear that $B_{1}, \cdots, B_{k-1}$ furnishes a partition of $Z_{n-r}$ into $k-1$ blocks. Since the $r$ elements in $B_{k}$ can be chosen in $\binom{n}{r}$ ways we get

$$
A_{n+1}=\sum_{r=0}^{n}\binom{n}{r} A_{n-r}=\sum_{r=0}^{n}\binom{n}{r} A_{r} .
$$

For a detailed discussion of the numbers $A_{n}$ see [5]. The polynomial $A_{n}(z)$ is discussed in [1]. We now define (compare [4, Ch. 4])

$$
\begin{equation*}
S_{1}(n, k)=\sum \frac{n!}{1^{k} 1_{2}{ }^{k 2} \cdots n^{k_{n}}} \frac{1}{k_{1}!k_{2}!\cdots k_{n}!}, \tag{1.17}
\end{equation*}
$$

where again the summation is over all nonnegative $k_{1}, k_{2}, k_{n}$ satisfying (1.2) and (1.3). This definition should be compared with (1.6). It follows from (1.17) that

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sum_{k=0}^{n} S_{1}(n, k) z^{k} & =\sum_{k_{1}, k_{2}, \cdots=0}^{\infty} \frac{1}{k_{1}!}\left(\frac{x z}{1}\right)^{k_{1}} \frac{1}{k_{2}!}\left(\frac{x^{2} z}{2}\right)^{k_{2}} \ldots \\
& =\exp \left(x z+\frac{x^{2} z}{2}+\frac{x^{3} z}{3}+\cdots\right) \\
& =\exp \left(z \log \frac{1}{1-x}\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k=0}^{n} S_{1}(n, k) \frac{x^{n}}{n!} z^{k}=(1-x)^{-z} \tag{1.18}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\sum_{k=0}^{n} s_{1}(n, k) z^{k}=z(z+1) \cdots(z+n-1) \tag{1.19}
\end{equation*}
$$

and therefore $S_{1}(n, k)$ is a Stirling number of the first kind.
We may restate (1.17) in the following way. Let

$$
\begin{equation*}
B_{1}, B_{2}, \cdots, B_{k} \tag{1.20}
\end{equation*}
$$

denote a typical partition of $Z_{n}$ into $k$ blocks with $n_{j}=|B|_{j}$. Then

$$
\begin{equation*}
S_{1}(n, k)=\left(n_{1}-1\right)!\left(n_{2}-1\right)!\cdots\left(n_{k}-1\right)! \tag{1.21}
\end{equation*}
$$

where the summation is over all partitions (1.20) such that

$$
n_{1}+n_{2}+\cdots+n_{k}=n .
$$

2. We again consider the number partition

$$
\begin{equation*}
n=k_{1} \cdot 1+k_{2} \cdot 2+\cdots+k_{n} \cdot n \quad\left(k_{1}+\cdots+k_{n}=k\right) . \tag{2.1}
\end{equation*}
$$

This may be replaced by

$$
\begin{equation*}
n=n_{1}+n_{2}+\cdots+n_{k}, \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
n_{1} \geqslant n_{2} \geqslant \cdots \geqslant n_{k} . \tag{2.3}
\end{equation*}
$$

If there are no other conditions the partition is said to be unrestricted. We may, on the other hand, assume that

$$
\begin{equation*}
n_{1}>n_{2}>\cdots>n_{k} \tag{2.4}
\end{equation*}
$$

in which case we speak of partitions into unequal parts. Alternatively we may assume that in (2.2) the parts $n_{j}$ are odd. If $q(n)$ denotes the number of partitions into distinct parts and $r(n)$ the number of partitions into odd parts, it is well known that [3, Ch. 19]

$$
\text { (2.5) } \quad q(n)=r(n) .
$$

This discussion suggests the following two problems for set partitions.

1. Determine the number of set partitions into $k$ blocks of unequal length.
2. Determine the number of set partitions into $k$ blocks, the number of elements in each block being odd.

We shall first discuss Problem 2. The results are similar to those of $\S 1$ above. Let $U(n, k)$ denote the number of set partitions of $Z_{n}$ into $k$ blocks
(2.6)
with
(2.7)

$$
n_{j}=\left|B_{j}\right| \equiv 1(\bmod 2) \quad(j=1,2, \cdots, k) .
$$

In addition we define $V(n, k)$ as the number of set partitions of $Z_{n}$ into $k$ blocks (2.6) with

$$
\begin{equation*}
n_{j}=\left|B_{j}\right| \equiv 0(\bmod 2) \quad(j=1,2, \cdots, k) \tag{2.8}
\end{equation*}
$$

(In the case of number partitions, the number of partitions

$$
n=n_{1}+n_{2}+\cdots+n_{k},
$$

where

$$
n_{1} \geqslant n_{2} \geqslant \cdots \geqslant n_{k}, \quad n_{j} \equiv 0(\bmod 2)
$$

is of course equal to the number of unrestricted partitions of $n / 2$.)
Exactly as in (1.6) we have

$$
\begin{equation*}
U(n, k)=\sum \frac{n!}{(1!)^{k_{1}}(3!)^{k_{2}}} \frac{1}{k_{1}!k_{2}!\cdots}, \tag{2.9}
\end{equation*}
$$

where the summation is over all nonnegative $k_{1}, k_{2}, \cdots$ such that

$$
\left\{\begin{array}{l}
n=k_{1} \cdot 1+k_{2} \cdot 3+k_{3} \cdot 5+\ldots  \tag{2.10}\\
k=k_{1}+k_{2}+k_{3}+\ldots
\end{array}\right.
$$

Similarly we have

$$
\begin{equation*}
V(n, k)=\sum \frac{n!}{(2!)^{k_{1}}(4!)^{k_{2}} \ldots} \frac{1}{k_{1}!k_{2}!\cdots} \tag{2.11}
\end{equation*}
$$

where now the summation is over all nonnegative $k_{1}, k_{2}, \cdots$ such that

$$
\left\{\begin{array}{l}
n=k_{1} \cdot 2+k_{2} \cdot 4+k_{3} \cdot 6+\cdots  \tag{2.12}\\
k=k_{1}+k_{2}+k_{3}+\cdots
\end{array}\right.
$$

It follows from (2.9) and (2.10) that

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sum_{k=0}^{n} U(n, k) z^{k} & =\sum_{k_{1}, k_{2}, \cdots=0}^{\infty} \frac{1}{k_{1}!}\left(\frac{x z}{1!}\right)^{k_{1}} \frac{1}{k_{2}!}\left(\frac{x^{3} z}{3!}\right)^{k_{2}} \ldots \\
& =\exp \left\{z\left(x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots\right)\right\}
\end{aligned}
$$

so that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k=0}^{n} U(n, k) \frac{x^{n}}{n!} z^{k}=\exp (z \sinh x) \tag{2.13}
\end{equation*}
$$

The corresponding generating function for $V(n, k)$ is

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k=0}^{n} V(n, k) \frac{x^{n}}{n!} z^{k}=\exp (z(\cosh x-1)) \tag{2.14}
\end{equation*}
$$

It is evident from the definitions that

$$
U(n, k)=0 \quad(n \equiv k+1(\bmod 2)), \quad V(n, k)=0 \quad(n \equiv 1(\bmod 2))
$$

Corresponding to the polynomial $A_{n}(z)$ and the number $A_{n}$ we define
(2.15)

$$
\left\{\begin{array}{c}
U_{n}(z)=\sum_{k=0}^{n} U(n, k) z^{k} \\
U_{n}=U_{n}(1)=\sum_{k=0}^{n} U(n, k)
\end{array}\right.
$$

and
(2.16)

$$
\left\{\begin{array}{c}
V_{n}(z)=\sum_{k=0}^{n} V(n, k) z^{k} \\
V_{n}=V_{n}(1)=\sum_{k=0}^{n} V(n, k)
\end{array}\right.
$$

Clearly $U_{n}$ is the total number of set partitions satisfying (2.6) and (2.7), while $V_{n}$ is the total number of set partitions satisfying (2.6) and (2.8).
By (2.13) and (2.15) we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} U_{n}(z) \frac{x^{n}}{n!}=\exp (z \sinh x) \tag{2.17}
\end{equation*}
$$

and by (2.14) and (2.15)

$$
\begin{equation*}
\sum_{n=0}^{\infty} V_{n}(z) \frac{x^{n}}{n!}=\exp (z(\cosh x-1)) \tag{2.18}
\end{equation*}
$$

Differentiating (2.17) with respect to $x$ we get

$$
\sum_{n=0}^{\infty} u_{n+1}(z) \frac{x^{n}}{n!}=z \cosh x \exp (z \sinh x)
$$

This implies

$$
\begin{equation*}
U_{n+1}(z)=z \sum_{2 r \leqslant n}\binom{n}{2 r} U_{n-2 r}(z) \tag{2.19}
\end{equation*}
$$

Differentiation of (2.17) with respect to $z$ gives

$$
\sum_{n=0}^{\infty} U_{n}^{\prime}(z) \frac{x^{n}}{n!}=\sinh x \exp (z \sinh x)
$$

so that
(2.20)

$$
U_{n}^{\prime}(z)=\sum_{2 r<n}\binom{n}{2 r+1} U_{n-2 r-1}(z)
$$

Put $F(x, z)=\exp (z \sinh x)$. Since

$$
\frac{\partial^{2}}{\partial z^{2}} F(x, z)=\sinh ^{2} x F(x, z)
$$

$$
\frac{\partial^{2}}{\partial x^{2}} F(x, z)=\frac{\partial}{\partial x}(z \cosh x) F(x, z)=\left(z^{2} \cosh ^{2} x+z \sinh x\right) F(x, z)
$$

it follows that

$$
\frac{\partial^{2}}{\partial x^{2}} F(x, z)=z^{2} F(x, z)+z \frac{\partial}{\partial z} F(x, z)+z^{2} \frac{\partial^{2}}{\partial z^{2}} F(x, z)
$$

This implies
(2.21)
and therefore
(2.22)

$$
U_{n+2}(z)=z^{2} U_{n}(z)+z U_{n}^{\prime}(z)+z^{2} U_{n}^{\prime \prime}(z)=z^{2} U_{n}(z)+\left(z D_{z}\right)^{2} U_{n}(z)
$$

$$
U(n+2, k)=U(n, k-2)+k^{2} U(n, k)
$$

This splits into the following pair of recurrences

$$
\left\{\begin{array}{c}
U(2 n+2,2 k)=U(2 n, 2 k-2)+4 k^{2} U(2 n, 2 k)  \tag{2.23}\\
U(2 n+1,2 k+1)=U(2 n-1,2 k-1)+(2 k+1)^{2} U(2 n-1,2 k+1)
\end{array}\right.
$$

To get explicit formulas for $U(n, k)$ we return to (2.13). We have

$$
\begin{aligned}
\exp (z \sinh x) & =\sum_{k=0}^{\infty} \frac{(z / 2)^{k}}{k!}\left(e^{x}-e^{-x}\right)^{k}=\sum_{k=0}^{\infty} \frac{(z / 2)^{k}}{k!} \sum_{j=0}^{k}(-1)^{k}\binom{k}{j} e^{(k-2 j) x} \\
& =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sum_{k=0}^{n} \frac{(z / 2)^{k}}{k!} \sum_{j=0}^{k}(-1)^{k}\binom{k}{j}(k-2 j)^{n},
\end{aligned}
$$

which yields

$$
\begin{equation*}
U(n, k)=\frac{1}{2^{k} k!} \sum_{j=0}^{k}(-1)^{k}\binom{k}{j}(k-2 j)^{n} . \tag{2.24}
\end{equation*}
$$

Similarly, since $\cosh x-1=2 \sinh ^{2} 1 / 2 x$,

$$
\begin{aligned}
\exp (z(\cosh x-1)) & =\exp \left(2 \sinh ^{2} 1 / 2 x\right)=\sum_{k=0}^{\infty} \frac{(z / 2)^{k}}{k!}\left(e^{1 / 2 x}-e^{-1 / 2 x}\right)^{2 k} \\
& =\sum_{k=0}^{\infty} \frac{(z / 2)^{k}}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{2 k}{j} e^{(k-j) x} \\
& =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sum_{2 k \leqslant n} \frac{(z / 2)^{k}}{k!} \sum_{j=0}^{2 k}(-1)^{j}\binom{2 k}{j}(k-j)^{n}
\end{aligned}
$$

we get
(2.25)

$$
V(n, k)=\frac{1}{2^{k} k!} \sum_{j=0}^{2 k}(-1)^{j}\binom{2 k}{j}(k-j)^{n}
$$

Comparing (2.25) with (2.24), we get

$$
\begin{equation*}
V(2 n, k)=\frac{(2 k)!}{2^{2 n-k} k!} U(2 n, 2 k) \tag{2.26}
\end{equation*}
$$

Thus the first of (2.23) gives

$$
\begin{equation*}
V(2 n+2, k)=(2 k-1) V(2 n, k-1)+k^{2} V(2 n, k) \tag{2.27}
\end{equation*}
$$

If we put
(2.28)

$$
V(2 n, k)=\frac{(2 k)!}{2^{k} k!} V^{\prime}(n, k)
$$

(2.27) becomes
(2.29) $\quad V^{\prime}(n+1, k)=V^{\prime}(n, k-1)+k^{2} V^{\prime}(n, k)$.

Returning to (2.18) we have

$$
\sum_{n=0}^{\infty} V_{n+1}(z) \frac{x^{n}}{n!}=z \sinh x \exp (z(\cosh x-1))
$$

This implies
(2.30)

$$
V_{n+1}(z)=z \sum_{2 r<n}\binom{n}{2 r+1} V_{n-2 r-1}(z) .
$$

Differentiation of (2.18) with respect to $z$ gives

$$
\sum_{n=0}^{\infty} V_{n}^{\prime}(z) \frac{x^{n}}{n!}=(\cosh x-1) \exp (z \cosh x-1)
$$

which implies

$$
\begin{equation*}
V_{n}^{\prime}(z)=\sum_{0<r \leqslant 2 n}\binom{n}{2 r} V_{n-2 r}(z) . \tag{2.31}
\end{equation*}
$$

It is evident from (2.15) and (2.19) that

$$
\begin{equation*}
U_{n+1}=\sum_{2 r \leqslant n}\binom{n}{2 r} U_{n-2 r} . \tag{2.32}
\end{equation*}
$$

Similarly from (2.30) and (2.16) we have

$$
\begin{equation*}
V_{n+1}=\sum_{2 r<n}\binom{n}{2 r+1} V_{n-2 r-1} . \tag{2.33}
\end{equation*}
$$

Since $V_{n}=0$ unless $n$ is even, we may replace (2.33) by

$$
\begin{equation*}
V_{2 n+2}=\sum_{r=0}^{n}\binom{2 n+1}{2 r+1} V_{2 n-2 r} \tag{2.34}
\end{equation*}
$$

It is easy to prove (2.32) and (2.34) directly by a combinatorial argument, exactly like the combinatorial proof of (1.16).

The first few values of $U_{n}, V_{2 n}$ follow.

$$
\begin{gathered}
U_{0}=U_{1}=U_{2}=1, \quad U_{3}=2, \quad U_{4}=5, \quad U_{5}=12, \quad U_{6}=36, \\
V_{0}=V_{2}=1, \quad V_{4}=4, \quad V_{6}=31, \quad V_{8}=379 .
\end{gathered}
$$

The following values of $U(2 n, 2 k), V^{\prime}(n, k), V(2 n+1,2 k+1)$ are computed by means of (2.23) and (2.29).
$U(2 n, 2 k)$

| $k$ | 1 | 2 | 3 | 4 |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 1 |  |  |  |
| 2 | 4 | 1 |  |  |
| 3 | 16 | 20 | 1 |  |
| 4 | 64 | 336 | 56 | 1 |

[HOV.

$U(2 n+1,2 k+1)$| $n$ | 0 | 1 | 2 | 3 | 4 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1 |  |  |  |  |
| 1 | 1 | 1 |  |  |  |
| 2 | 1 | 10 | 1 |  |  |
| 3 | 1 | 91 | 35 | 1 |  |
| 4 | 1 | 820 | 966 | 84 | 1 |


$V^{\prime}(n, k)$| $n$ | 0 | 1 | 2 | 3 | 4 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1 |  |  |  |  |
| 1 | 1 | 1 |  |  |  |
| 2 | 1 | 5 | 1 |  |  |
| 3 | 1 | 21 | 14 | 1 |  |
| 4 | 1 | 85 | 147 | 30 | 1 |

For additional properties of $U(n, k)$ see [2].
3. Put
(3.1)

$$
P_{n}(z)=\sum_{k=0}^{n-1} U(2 n-1,2 k+1) z\left(z^{2}-1^{2}\right)\left(z^{2}-3^{2}\right) \cdots\left(z^{2}-(2 k-1)^{2}\right)
$$

Then, by the second of•(2.23),

$$
\begin{aligned}
z^{2} P_{n}(z) & =\sum_{k=0}^{n-1} U(2 n-1,2 k+1) z\left(z^{2}-1^{2}\right)\left(z^{2}-3^{2}\right) \cdots\left(z^{2}-(2 k-1)^{2}\right)\left[z^{2}-(2 k+1)^{2}-(2 k+1)^{2}\right] \\
& =\sum_{k=0}^{n}\left[U(2 n-1,2 k-1)+(2 k+1)^{2} U(2 n-1,2 k+1)\right] z\left(z^{2}-1^{2}\right)\left(z^{2}-3^{2}\right) \cdots\left(z^{2}-(2 k-1)^{2}\right) \\
& =\sum_{n=0}^{n} U(2 n+1,2 k+1) z\left(z^{2}-1^{2}\right)\left(z^{2}-3^{2}\right) \cdots\left(z^{2}-(2 k-1)^{2}\right)
\end{aligned}
$$

so that

$$
z^{2} P_{n}(z)=P_{n+1}(z)
$$

Since $P_{1}(z)=z$, it follows that $P_{n}(z)=z^{2 n-1}$ and (3.1) becomes

$$
\begin{equation*}
z^{2 n-1}=\sum_{k=0}^{n-1} U(2 n-1,2 k+1) z\left(z^{2}-1^{2}\right)\left(z^{2}-3^{2}\right) \cdots\left(z^{2}-(2 k-1)^{2}\right) \tag{3.2}
\end{equation*}
$$

Similarly it follows from the first of (2.23) that
(3.3)

$$
z^{2 n-1}=\sum_{k=0}^{n-1} U(2 n, 2 k) z\left(z^{2}-2^{2}\right)\left(z^{2}-4^{2}\right) \cdots\left(z^{2}-(2 k-2)^{2}\right)
$$

By (2.26), (2.28) and (3.2) we have also

$$
\begin{equation*}
z^{2 n-1}=\sum_{k=0}^{n-1} V_{n}^{\prime}(n, k) z\left(z^{2}-1^{2}\right)\left(z^{2}-3^{2}\right) \cdots\left(z^{2}-(2 k-1)^{2}\right) \tag{3.4}
\end{equation*}
$$

Formula (1.17) for $S_{1}(n, k)$ suggests the following definitions.

$$
\begin{equation*}
u_{1}(n, k)=\sum \frac{n!}{1^{k_{1}} k^{k_{2}} k_{3}} \frac{1}{k_{1}!k_{2}!k_{3}!\cdots} \tag{3.5}
\end{equation*}
$$

where the summation is over all nonnegative $k_{1}, k_{2}, k_{3}, \cdots$, such that

$$
\begin{gather*}
\left\{\begin{array}{c}
n=k_{1} \cdot 1+k_{2} \cdot 3+k_{3} \cdot 5+\ldots \\
k=k_{1}+k_{2}+k_{3}+\cdots
\end{array}\right. \\
v_{1}(n, k)=\sum \frac{n!}{2^{k_{1}} 4^{k_{2}} 6^{k_{3}} \ldots} \frac{1}{k_{1}!k_{2}!k_{3}!}, \tag{3.6}
\end{gather*}
$$

.
where the summation is over all nonnegative $k_{1}, k_{2}, k_{3}, \cdots$ such that

$$
\left\{\begin{array}{c}
n=k_{1} \cdot 2+k_{2} \cdot 4+k_{3} \cdot 6+\ldots \\
k=k_{1}+k_{2}+k_{3}+\cdots .
\end{array}\right.
$$

We observe that $U_{1}(n, k)$ is the number of permutations of $Z_{n}$ with $k$ cycles each of odd length while $V_{1}(n, k)$ is the number of permutations of $Z_{n}$ with $k$ cycles each of even length.
It follows from (3.5) that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k=0}^{n} U_{1}(n, k) \frac{x^{n}}{n!} z^{k}=\left(\frac{1+x}{1-x}\right)^{1 / 2 z} \tag{3.7}
\end{equation*}
$$

Similarly, by (3.6),

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{2 k \leqslant n} v_{1}(n, k) \frac{x^{n}}{n!} z^{k}=\left(1-x^{2}\right)^{-1 / 2 z} \tag{3.8}
\end{equation*}
$$

so that

$$
\begin{equation*}
V_{1}(n, k)=\frac{(2 n)!}{2^{k} n!} S_{1}(n, k) \tag{3.9}
\end{equation*}
$$

This is also clear if we compare (3.6) with (1.17).
It is easily verified that

$$
\left(1-x^{2}\right) \frac{\partial}{\partial x}\left(\frac{1+x}{1-x}\right)^{1 / 2 z}=z\left(\frac{1+x}{1-x}\right)^{1 / 2 z} .
$$

If we put

$$
U_{1, n}(z)=\sum_{k} U_{1}(n, k) z^{k}
$$

it follows from (3.7) that
(3.10)

This is equivalent to
(3.11)

$$
U_{1}(n+1, k)=U_{1}(n, k-1)+n(n-1) U_{1}(n-1, k) .
$$

Notice that this recurrence is somewhat different in form from the familiar recurrence for $S_{1}(n, k)$.
By expanding the right member of (3.7) we get

$$
\begin{equation*}
U_{1, n}(z)=n!\sum_{r=1}^{n} 2^{r}\binom{n-1}{r-1}\binom{1 / 2 z}{r} \quad(n \geqslant 1) \tag{3.12}
\end{equation*}
$$

To verify directly that (3.12) implies (3.10) we take

$$
\begin{aligned}
z U_{1, n}(z) & =n!\sum_{r=1}^{n} 2^{r}\binom{n-1}{r-1}\left\{2(r+1)\binom{1 / 2 z}{r+1}+2 r\binom{1 / 2 z}{r}\right\} \\
& =n!\sum_{r=1}^{n} 2^{r}\binom{1 / 2 z}{r}\left\{2 r\binom{n-1}{r-1}+r\binom{n-1}{r-2}\right\}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
U_{1, n+1}(z)-n(n-1) U_{1, n-1}(z) & =(n+1)!\sum_{r=1}^{n+1} 2^{r}\binom{n}{r-1}\binom{1 / 2 z}{r}-(n-1) n!\sum_{r=1}^{n-1} 2^{r}\binom{n-2}{r-1}\binom{1 / 2 z}{r} \\
& =n!\sum_{r=1}^{n} 2^{r}\binom{1 / 2 z}{r}\left\{(n+1)\binom{n}{r-1}-(n-1)\binom{n-2}{r-1}\right\} \\
& =n!\sum_{r=1}^{n} 2^{r}\binom{1 / 2 z}{r}\left\{2 r\binom{n-1}{r-1}+r\binom{n-1}{r-2}\right\} .
\end{aligned}
$$

It is evident from (3.5) that

$$
\begin{equation*}
U_{1}(n, k)=0 \quad(n \equiv k+1(\bmod 2)) \tag{3.13}
\end{equation*}
$$

This is also clear from either (3.10) or (3.11).
By means of (3.10) we get

$$
\begin{aligned}
& U_{1,1}(z)=z, \quad U_{1,2}(z)=z^{2}, \quad U_{1,3}(z)=2 z+z^{3} \\
& U_{1,4}(z)=8 z^{2}+z^{4}, \quad U_{1,5}(z)=24 z+20 z^{3}+z^{5} .
\end{aligned}
$$

The number

$$
\begin{equation*}
U_{1, n}=U_{1, n}(1)=\sum_{k} U_{1}(n, k) \tag{3.14}
\end{equation*}
$$

evidently denotes the total number of permutations of $Z_{n}$ into cycles of odd length. By (3.12) we have

$$
\begin{equation*}
U_{1, n}=n!\sum_{r=1}^{n} 2^{r}\binom{n-1}{r-1}\binom{1 / 2}{r} \quad(n \geqslant 1) . \tag{3.15}
\end{equation*}
$$

Alternatively, by (3.7) and (3.17),

$$
\sum_{n=0}^{\infty} U_{1, n} \frac{x^{n}}{n!}=\left(\frac{1+x}{1-x}\right)^{1 / 2}=(1+x)\left(1-x^{2}\right)^{-1 / 2}=(1+x) \sum_{n=0}^{\infty}\binom{2 n}{n}\left(\frac{x}{2}\right)^{2 n}
$$

which yields
(3.16)
$U_{1,2 n}=(2 n)!\binom{2 n}{n} 2^{-2 n}=(1.3 .5 \cdots(2 n-1))^{2}$,
(3.17)

$$
U_{1,2 n+1}=(2 n+1)!\binom{2 n}{n} 2^{-2 n}=(2 n+1) U_{1,2 n}
$$

4. To obtain an array orthogonal to $U(n, k)$ we consider the expansion

$$
\begin{equation*}
\left(\sqrt{1+x^{2}}-x\right)^{-z}=\sum_{n=0}^{\infty} c_{n}(z) \frac{x^{n}}{n!} \tag{4.1}
\end{equation*}
$$

If we denote the left member of (4.1) by $F$, we have

$$
\frac{\partial F}{\partial x}=\frac{z}{\sqrt{1+x^{2}}} F, \quad \frac{\partial^{2} F}{\partial x^{2}}=\left(\frac{z^{2}}{1+x^{2}}-\frac{x z}{\left(1+x^{2}\right)^{3 / 2}}\right) F,
$$

which gives

$$
\begin{equation*}
\cdot\left(1+x^{2}\right) \frac{\partial^{2} F}{\partial x^{2}}+x \frac{\partial F}{\partial x}=z^{2} F \tag{4.2}
\end{equation*}
$$

Substituting from (4.1) in (4.2) we get

$$
C_{n+2}(z)+n(n-1) C_{n}(z)+n C_{n}(z)=z^{2} C_{n}(z)
$$

so that
(4.3)

$$
C_{n+2}(z)=\left(z^{2}-n^{2}\right) C_{n}(z) .
$$

Since $C_{0}(z)=1, \quad C_{1}(z)=z$, it follows that

$$
\left\{\begin{array}{l}
C_{2 n}(z)=z^{2}\left(z^{2}-2^{2}\right)\left(z^{2}-4^{2}\right) \cdots\left(z^{2}-(2 n-2)^{2}\right)  \tag{4.4}\\
C_{2 n+1}(z)=z\left(z^{2}-1^{2}\right)\left(z^{2}-3^{2}\right) \cdots\left(z^{2}-(2 n-1)^{2}\right)
\end{array}\right.
$$

Therefore (4.1) becomes

$$
\begin{align*}
\left(\sqrt{1+x^{2}}-x\right)^{-z}= & \sum_{n=0}^{\infty} \frac{z^{2}\left(z^{2}-2^{2}\right) \cdots\left(z^{2}(2 n-2)^{2}\right)}{(2 n)!} x^{2 n}  \tag{4.5}\\
& +\sum_{n=0}^{\infty} \frac{z\left(z^{2}-1^{2}\right) \cdots\left(z^{2}-(2 n-1)^{2}\right)}{(2 n+1)!} x^{2 n+1}
\end{align*}
$$

If we differentiate both sides of (4.5) with respect to $z$ and then put $z=0$, we get

$$
\log \left(\sqrt{1+x^{2}}-x\right)=-\sum_{n=0}^{\infty}(-1)^{n} \frac{1^{2} \cdot 3^{2} \ldots(2 n-1)^{2}}{(2 n+1)!} x^{2 n+1}
$$

Thus (4.5) becomes
(4.6)

$$
\begin{aligned}
& \exp \left\{z \sum_{n=0}^{\infty}(-1)^{n} \frac{1^{2} \cdot 3^{2} \cdots(2 n-1)^{2}}{(2 n+1)!} x^{2 n+1}\right\} \\
& =\sum_{n=0}^{\infty} \frac{z^{2}\left(z^{2}-2^{2}\right) \cdots\left(z^{2}-(2 n-2)^{2}\right)}{(2 n)!} x^{2 n} \\
& \quad+\sum_{n=0}^{\infty} \frac{z\left(z^{2}-1^{2}\right) \cdots\left(z^{2}-(2 n-1)^{2}\right)}{(2 n+1)!} x^{2 n+1}
\end{aligned}
$$

Now replace $x$ by $i x$ and $z$ by -iz and we get
[NOV.
(4.7) $\exp \left\{z \sum_{n=0}^{\infty} 1^{2} \cdot 3^{2} \cdots(2 n-1)^{2} \frac{x^{2 n+1}}{(2 n+1)!}\right\}=\sum_{n=0}^{\infty} \frac{z^{2}\left(z^{2}+2^{2}\right) \cdots\left(z^{2}+(2 n-2)^{2}\right)}{(2 n)!} x^{2 n}$

$$
+\sum_{n=0}^{\infty} \frac{z\left(z^{2}+1^{2}\right)\left(z^{2}+3^{2}\right) \cdots\left(z^{2}+(2 n-1)^{2}\right)}{(2 n+1)!} x^{2 n+1}
$$

We now define $W(n, k)$ by means of

$$
\left\{\begin{array}{l}
z^{2}\left(z^{2}+2^{2}\right)\left(z^{2}+4^{2}\right) \cdots\left(z^{2}+(2 n-2)^{2}\right)=\sum_{k=0}^{n} w(2 n, 2 k) z^{2 k}  \tag{4.8}\\
z\left(z^{2}+1^{2}\right)\left(z^{2}+3^{2}\right) \cdots\left(z^{2}+(2 n-1)^{2}\right)=\sum_{k=0}^{n} W(2 n+1,2 k+1) z^{2 k+1}
\end{array}\right.
$$

It follows at once from (3.2), (3.3) and (4.8) that

$$
\begin{align*}
\sum_{j=k}^{n}(-1)^{n-j} W(2 n, 2 j) U(2 j, 2 k)= & \sum_{j=k}^{n}(-1)^{j-k} U\left(2 n, 2 j W(2 j, 2 k)=\delta_{n, k}\right.  \tag{4.9}\\
& \sum_{j=k}^{n}(-1)^{n-j} W(2 n+1,2 j+1) U(2 j+1,2 k+1)  \tag{4.10}\\
= & \sum_{j=k}^{n}(-1)^{j-k} U(2 n+1,2 j+1) W(2 j+1,2 k+1)=\delta_{n, k} .
\end{align*}
$$

By means of (4.7) we can exhibit $W(n, k)$ in a form similar to (2.9) and (2.11). Indeed it is evident from (4.7) and (4.8) that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k=0}^{n} W(n, k) \frac{x^{n}}{n!} z^{k}=\exp \left\{z \sum_{n=0}^{\infty} f(n) \frac{x^{2 n+1}}{(2 n+1)!}\right\} \tag{4.11}
\end{equation*}
$$

where for brevity we put

$$
f(n)=1^{2} \cdot 3^{2} \cdot 5^{2} \cdots(2 n-1)^{2}
$$

It follows from (4.11) that

$$
\begin{equation*}
W(n, k)=\sum \frac{n!}{(1!)^{k}(3!)^{k_{2}}(5!)^{k_{3}} \ldots} \frac{(f(1))^{k_{1}}(f(2))^{k_{2}}(f(3))^{k_{3}} \ldots}{k_{1}!k_{2}!k_{3}!\cdots} \tag{4.12}
\end{equation*}
$$

where the summation is over all nonnegative $k_{1}, k_{2}, k_{3}, \cdots$ such that

$$
\begin{equation*}
n=k_{1} \cdot 1+k_{2} \cdot 3+k_{3} \cdot 5+\cdots, \quad k=k_{1}+k_{2}+k_{3}+\cdots . \tag{4.13}
\end{equation*}
$$

Moreover, in view of the definition of $U(n, k)$, we have the following combinatorial interpretation of $W(n, k)$; $W(n, k)$ is the number of weighted number partitions (4.13): to each partition we assign the weight

$$
-\frac{n!}{(1!)^{k_{1}}(3!)^{k_{2}}(5!)^{k_{3}} \ldots} \frac{(f(1))^{k_{1}}(f(2))^{k_{2}}(f(3))^{k_{3}} \ldots}{k_{1}!k_{2}!k_{3}!}
$$

A different interpretation is suggested by (4.8).
5. We now return to Problem 1 as stated in the beginning of $\S 2$.

Let $T(n, k)$ denote the number of set partitions of $Z_{n}$ into $k$ blocks

$$
B_{1}, B_{2}, \cdots B_{k}
$$

of unequal length. Then it is evident that we have the generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k} T(n, k) \frac{x^{n}}{n!} z^{k}=\prod_{n=1}^{\infty}\left(1+\frac{x^{n} z}{n!}\right) \tag{5.1}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
T(n, k)=\sum \frac{n!}{n_{1}!n_{2}!\cdots n_{k}!} \tag{5.2}
\end{equation*}
$$

where the summation is over all $n_{1}, n_{2}, \cdots, n_{k}$ such that

$$
\begin{equation*}
n=n_{1}+n_{2}+\cdots+n_{k}, \quad n_{1}>n_{2}>\cdots>n_{k}>0 . \tag{5.3}
\end{equation*}
$$

In other words, $T(n, k)$ can be thought of as a weighted number partition: to each partition (5.3) we assign the weight

$$
\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

this weight is of course the number of admissible set partitions corresponding to the given number partition. We can define a function that includes $T(n, k), U(n, k), V(n, k)$ as special cases. Let

$$
\begin{equation*}
r=\left(r_{1}, r_{2}, r_{3}, \cdots\right) \tag{5.4}
\end{equation*}
$$

be a sequence in which $r_{j}$ is either a nonnegative integer or infinity. Let $S(n, k \mid \underline{r})$ denote the number of set partitions of $Z_{n}$ into $k$ blocks $B_{1}, B_{2}, \cdots, B_{k}$ with the requirement that, for each $j$, there are at most $r_{j}$ blocks of length $j$. Thus, for example, we have
(5.5)

$$
S(n, k \mid \underline{r})=\left\{\begin{array}{ll}
S(n, k) & \underline{r}=(\infty, \infty, \infty, \ldots) \\
U(n, k) & \underline{r}=(\infty, 0, \infty, 0, \cdots) \\
V(n, k) & \underline{r}=(0, \infty, 0, \infty, \ldots) \\
T(n, k) & \underline{r}=(1,1,1, \ldots) .
\end{array} .\right.
$$

For an arbitrary sequence (5.4) we have the generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k} S(n, k \mid \underline{r}) \frac{x}{n!} z^{k}=\prod_{j=1}^{\infty}\left\{\sum_{k=0}^{r_{j}} \frac{1}{k!}\left(\frac{x^{j_{z}}}{j!}\right)^{k}\right\} \tag{5.6}
\end{equation*}
$$

Clearly (5.6) reduces to a known result in each of the cases (5.5).
We shall now obtain some more explicit results for the enumerant $T(n, k)$. It is convenient to define

$$
\begin{equation*}
T_{n}(z)=\sum_{k} T(n, k) z^{k} \tag{5.7}
\end{equation*}
$$

and
(5.8)

$$
T_{n}=T_{n}(1)=\sum_{k} T(n, k) .
$$

Then, by (5.1),

$$
\begin{equation*}
\sum_{n=0}^{\infty} T_{n}(z) \frac{x^{n}}{n!}=\prod_{n=1}^{\infty}\left(1-\frac{x^{n} z}{n!}\right) \tag{5.9}
\end{equation*}
$$

Put

$$
F=F(x, z)=\prod_{n=1}^{\infty}\left(1+\frac{x^{n} z}{n!}\right)
$$

Then it is easily verified that
(5.10)

$$
\log F(x, z)=\sum_{n=1}^{\infty} F_{n}(z) \frac{x^{n}}{n!}
$$

where
(5.11)

$$
F_{n}(z)=\sum_{r s=n}(-1)^{s-1} \frac{n!}{s(r!)^{s}} z^{s}
$$

Differentiating (5.10) with respect to $x$, we get

$$
\frac{F_{x}(x, z)}{F(x, z)}=\sum_{n=0}^{\infty} F_{n+1}(z) \frac{x^{n}}{n!}
$$

This implies the recurrence

$$
\begin{equation*}
T_{n+1}(z)=\sum_{r=0}^{n}\binom{n}{r} F_{r+1}(z) T_{n-r}(z) \tag{5.12}
\end{equation*}
$$

Differentiating (5.10) with respect to $z$, we get

$$
\frac{F_{z}(x, z)}{F(x, z)}=\sum_{n=1}^{\infty} F_{n}^{\prime}(z) \frac{x^{n}}{n!}
$$

and therefore

$$
\begin{equation*}
T_{n}^{\prime}(z)=\sum_{r=1}^{n}\binom{n}{r} F_{n}^{\prime}(z) T_{n-r}(z) \tag{5.13}
\end{equation*}
$$

Written at length, (5.13) becomes

$$
\begin{equation*}
\sum_{k} k T(n, k) z^{k}=\sum_{r=1}^{n}\binom{n}{r} T(n-r, j) \sum_{s t=r}(-1)^{s-1} \frac{r!}{(t!)^{s}} z^{s} . \tag{5.14}
\end{equation*}
$$

This gives
(5.15)

$$
k T(n, k)=\sum_{\substack{0<s t \leqslant n \\ s \leqslant t}}(-1)^{s-1}\binom{n}{s t} \frac{(s t)!}{(t!)^{s}} T(n-s t, k-s)
$$

It is obvious that
(5.16)

$$
T(n, 1)=1 \quad(n \geqslant 1)
$$

Using (5.14) we get

If we put

$$
\begin{equation*}
T(n, 2)=1 / 2\left(2^{n}-2\right)-1 / 2\binom{n}{n / 2}=S(n, 2)-1 / 2\binom{n}{n / 2} . \tag{5.17}
\end{equation*}
$$

(5.18)

$$
G_{k}(x)=\sum_{n} T(n, k) \frac{x^{n}}{n!}
$$

and
(5.19)

$$
H_{j}(x)=\sum_{t=1}^{\infty} \frac{x^{j t}}{(t!)^{j}}
$$

then by (5.14)

$$
\begin{equation*}
k G_{k}(x)=\sum_{s=1}^{\infty}(-1)^{s-1} H_{s}(x) G_{k-s}(x) \tag{5.20}
\end{equation*}
$$

Thus for example
$G_{1}(x)=H_{1}(x)=e^{x}-1, \quad 2!G_{2}(x)=H_{1}^{2}(x)-H_{2}(x), \quad 3!G_{3}(x)=H_{1}^{3}(x)-3 H_{1}(x) H_{2}(x)+2 H_{3}(x)$ and so on.
If we take $z=1$ in (5.12) we get the recurrence

$$
\begin{equation*}
T_{n+1}=\sum_{r=0}^{\infty}\binom{n}{r} F_{r+1}(1) T_{n-r} \tag{5.21}
\end{equation*}
$$

Unfortunately the numbers

$$
F_{n}(1)=\sum_{r s=n}(-1)^{s-1} \frac{n!}{s(r!)^{s}}
$$

are not simple. We note that

$$
\begin{equation*}
\sum_{n=1}^{\infty} F_{n}(1) \frac{x^{n}}{n!}=\sum_{s=1}^{\infty} \frac{(-1)^{s-1}}{s} H_{s}(x) \tag{5.22}
\end{equation*}
$$

Analogous to (5.2) we may define

$$
\begin{equation*}
T_{1}(n, k)=\sum \frac{n!}{n_{1} n_{2} \cdots n_{k}} \tag{5.23}
\end{equation*}
$$

where again the summation is over all $n_{1}, n_{2}, \cdots, n_{k}$ such that

$$
n=n_{1}+n_{2}+\cdots+n_{k}, \quad n_{1}>n_{2}>\cdots>n_{k}>0 .
$$

Then $T_{1}(n, k)$ denotes the number of permutations of $Z_{n}$ with $k$ cycles of unequal length. From (5.23) we obtain the generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k} T_{1}(n, k) \frac{x^{n}}{n!} z^{k}=\prod_{n=1}^{\infty}\left(1+\frac{x^{n} z}{n}\right) \tag{5.24}
\end{equation*}
$$

As above we define

$$
T_{1, n}(z)=\sum_{k} T_{1}(n, k) z^{k}, \quad T_{1, n}=T_{1, n}(1)=\sum_{k} T_{1}(n, k)
$$

We can obtain recurrences for $T_{1}(n, k)$ and $T_{1, n}$ similar to those for $T(n, k)$ and $T_{n}$. In particular we have

$$
\begin{equation*}
T_{1, n+1}=\sum_{r=0}^{n}\binom{n}{r} F_{1, r+1}(1) T_{1, n-r} \tag{5.25}
\end{equation*}
$$

where

$$
F_{1, n}(1)=\sum_{r s=n}(-1)^{s-1} \frac{n!}{s r^{s}} .
$$

We remark that $T_{1, n}$ is the total number of permutations of $Z_{n}$ with cycles of unequal length. Note that

$$
\begin{gather*}
\sum_{n=1}^{\infty} T_{1, n} \frac{x^{n}}{n!}=\prod_{n=1}^{\infty}\left(1+\frac{x^{n}}{n}\right) .  \tag{5.26}\\
\underline{r}=\left(r_{1}, r_{2}, r_{3}, \cdots\right)
\end{gather*}
$$

be a sequence in which each $r_{j}$ is either a nonnegative integer or infinity. Let $S_{1}(n, k \mid r)$ denote the number of permutations $\pi$ in $Z_{n}$ with the requirement that, for each $i$, the number of cycles of length $i$ in $\pi$ is at most $r_{i}$. Then

$$
S_{1}(n, k \mid \underline{r})= \begin{cases}S_{1}(n, k) & \underline{r}=(\infty, \infty, \infty, \ldots) \\ U_{1}(n, k) & \underline{r}=(\infty, 0, \infty, 0, \ldots) \\ V_{1}(n, k) & \underline{r}=(0, \infty, 0, \infty, \ldots) \\ T_{1}(n, k) & \underline{r}=(1,1,1,-) .\end{cases}
$$

For an arbitrary sequence (5.27) we have the generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{k} S_{1}(n, k \mid \underline{r}) \frac{x^{n}}{n!} z^{k}=\prod_{j=1}^{\infty}\left\{\sum_{k=0}^{r_{j}} \frac{1}{k!}\left(\frac{x^{j} z}{j}\right)^{k}\right\} \tag{5.28}
\end{equation*}
$$

The following question is of some interest. For what sequences (5.27) will the orthogonality relations

$$
\begin{align*}
& \sum_{j=k}^{n}(-1)^{n-j} S_{1}(n, j \mid \underline{\underline{l}}) S(j, k \mid \underline{r})  \tag{5.29}\\
= & \sum_{j=k}^{n}(-1)^{j-k} S(n, j \mid \underline{r}) S_{1}(j, k \mid \underline{r})=\delta_{n, k}
\end{align*}
$$

be satisfied?
Alternatively we may ask for what pairs of sequences $r, \underline{s}$ will the orthogonality relations
be satisfied?

$$
\begin{equation*}
\sum_{j=k}^{n}(-1)^{n-j} S_{1}(n, j \mid \underline{r}) S(j, k \mid \underline{s})=\sum_{j=k}^{n}(-1)^{j-k} S(n, j \mid \underline{s}) S_{1}(j, k \mid \underline{r})=\delta_{n, k} \tag{5.30}
\end{equation*}
$$

## REFERENCES

1. L. Carlitz, "Single Variable Bell Polynomials," Collectanea Mathematica, Vol. 14 (1962), pp. 13-25.
2. L. Carlitz and John Riordan, "The Divided Central Differences of Zero," Canadian Journal of Mathematics, Vol. 15 (1963), pp. 94-100.
3. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1938.
4. John Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.
5. Gian-Carlo Rota, "The Number of Partitions of a Set," American Math. Monthly, Vol. 71 (1964), pp. 498504.

*     * 

