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1. Let Zn denote the set 11, 2,—,/7 J. LetS(n,k) denote the number of partitions of Zn into k non-empty 

subsets Bj, —, Bk. The B^ are called blocks of the partition. Put 

nj = \Bj\ (I = 1,2,-,k), 
so that 
(1.1) n-j + n2 + ~' + rik = n. 

It is convenient to introduce a slightly different notation. Put 

(1.2) n = kvl + k2-2 + - + kn-nf 

where 
kj > 0 (j = 1,2, ~,n) 

and 
(1.3) k1+k2+- + kn = k. 

We call (1.2) a number partition of the integer n; the condition (1.3) indicates that the partition is into k parts, 
not necessarily distinct. For brevity (1.2) is often written in the form 

(1.4) n = 1kl2k2-nkn . 

Corresponding to the partition (1.2) we have 

(1 5) P± L . 
(Wkl(2!)k2-(n!)k" * f ' * 2 / ~ V 

set partitions. Hence 

(1.6) S(n,k) = £ 
W)kl(2l)k2..-(n!)k" k''k2'~knl ' 

where the summation is over all nonnegative k?, k2, —, kn satisfying (1.2) and (1.13). Thus 

sSs*** - x (*)'(«)'-00 
' k2,-=0 

E JL (M\
 kl JL (*ll\ k% 

kj \1! I kj \2! } 
<2,-=0 

n=0 k=0 kl,k2,~=0 

kx,k2 

and we get the well known formula 
oo oo 

(1.7) £ E S(n,k) x4 zk = exp(Z(ex - V). 

n=0 k=0 

^Supported in part by NSF grant GP-17031. 
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k-j I k\ ;n 

It is clear from (1.7) that 

(1.8) E Sln,k)£ = lj (ex-l)k, 
n! k! 

n=0 
which implies 

k 

(1-9) S(n,k)=-lj E (-VH[) 
j=0 

the familiar formula for a Stirling number of the second kind. 
Next put 

n 

(1.10) An(z) = £ S(n,k)zk 

and in particular 
n 

(1.11) / ! „ - An(1) = £ Sfo,W-

The polynomial / l ^ /z j is called a single-variable Bell polynomial. The number An is evidently the total number 
of set partitions of Zn . 

From (1.7) and (1.10) we have 

(1.12) £ An(z)£= exp(z(ex-D). 

Differentiation with respect tox gives 

(1.13) An+1(z) = z E (") Ariz) 

r=0 

while differentiation with respect toz gives 
n-1 

(1.14) A'n(z)= £ ( r ) ^ r W . 
r=0 

Hence 
(1.15) An+1(z) = zAn(z) + zAn(z). 

By (1.10), (1.15) is equivalent to the familiar recurrence 

S(n + 1,k) = S(n, k-1) + kS(n, k). 

If we takez = 7 in (1.13) we get 
n 

(1.16) An+1 = E M Ar (A0= 1). 
r=0 

This recurrence can be proved directly in the following way. Consider a partition of Zn+i into k blocks^/, 82, 
•••, Bfr. Assume that the element n + 1 is in Bk and let Bk contain r additional elements, r > 0. Keeping these r 
elements fixed it is clear that #7, —, Bk-i furnishes a partition of Zn,r into k - 1 blocks. Since the r elements 

in Bk can be chosen in l n ) ways we get 

An+1-i.. [nr)An-r=i: (",) Ar. 
r=0 r=0 
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For a detailed discussion of the numbers An see [5 ] . The polynomial An(z) is discussed in [1] . 
We now define (compare [4, Ch. 4]) 

d-17> Sifak) = E n! 1 

1kl2k2...nkn k1!k2!~'kn! 

where again the summation is over all nonnegative k1t k2, kn satisfying (1.2) and (1.3). This definition should 
be compared with (1.6). It follows from (1.17) that 

i i s *"*'-£>(?) "6 (?) n=0 k=0 kl,k2,-=0 

exp (xz + ^ + X-^ + -. j 

exp 

so that 
("T?;) 

(1.18) E Z S1(n/k)x—zk = (1-xFz 

It follows that 
n=0 k=0 

(1.19) X ) $l(n,k)zk = z(z+1)-(z+n- 1), 

k=0 

and therefore Si(n,k) is a Stirling number of the first kind. 
We may restate (1.17) in the following way. Let 

(1.20) BhB2,~,Bk 

denote a typical partition of Zn into k blocks with nj= \B\j. Then 

(1.21) Sj(n,k) = (n7- 1)!(n2- 1)!-(nk-1)!, 

where the summation is over all partitions (1.20) such that 

n-j + n2 + ~' + rik = n. 
2. We again consider the number partition 

(2.1) n = kv1 +k2*2+- + kn-n (k7 + - + kn = k). 

This may be replaced by 

(2.2) n = n1+n2 + - + nk, 
where 
(2.3) n1 > n2> - > nk. 

If there are no other conditions the partition is said to be unrestricted. We may, on the other hand, assume that 

(2.4) nj > n2 > ••• > nk, 

in which case we speak of partitions into unequal parts. Alternatively we may assume that in (2.2) the parts nj 
are odd. If q(n) denotes the number of partitions into distinct parts and r(n) the number of partitions into odd 
parts, it is well known that [3, Ch. 19] 
(2.5) q(n) = r(n). 

This discussion suggests the following two problems for set partitions. 



330 SET PARTITIONS [|\|OV. 

1. Determine the number of set partitions into k blocks of unequal length. 
2. Determine the number of set partitions into k blocks, the number of elements in each block being odd. 
We shall first discuss Problem 2. The results are similar to those of § 1 above. Let U(n,k) denote the number 

of set partitions of Zn into k blocks 
(2.6) BU B2. - , Bk 

with 
(2.7) nj = \Bj\ = 1 (mod 2) (j = 1,2, •», k). 

In addition we define V(n,k) as the number of set partitions of Zn into k blocks (2.6) with 

(2.8) rij = \Bj\ = 0 (mod 2) (j = 1,2, - , k). 

(In the case of number partitions, the number of partitions 

n = n-/ + n2 + -~ + nk< 
where 

n-i > n2 > — > nk, rij = 0 (mod 2), 
is of course equal to the number of unrestricted partitions of n/2.) 

Exactly as in (1.6) we have 

(2.9) U(n,k) = T ^ 7-TT1— > 

where the summation is over ail nonnegative ki, k2, "-such that 
| n = kv1 + k2'3 + k3-5+ -

(2-10> \k-k,+k2+k3+... 
Similarly we have 

(2.11) V(n,k) = £ n / ' 
" (2!)kl(4!)k2-kl!k2h'' 

where now the summation is over all nonnegative kj, k2t -such that 

(2.12) j n = kv2 + k2-4 + k3°6 + ~> 

\ k = k1 + k2 + k3 + -. 

It follows from (2.9) and (2.10) that 

n °° . . k* . o . k2 

so that 

kx,k%,-=0 n=0 k=0 

,3 „5 

(2.13) J] y ; U(n,k) ~zk = exp (z sinh x). 
n! 

n=0 k=0 

The corresponding generating function for V(n,k) is 
oo n 

(2.14) £ Z Vh'U X—,zk= exp (zfcoshx- V). 
n=0 k-^O 

It is evident from the definitions that 

Ufn,k) = 0 (n = k+1 (mod 2)), V(n,k) = 0 (n = 1 (mod 2)1 
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Corresponding to the polynomial An(z) and the number An we define 

n 
UnM = E U(ntk)zk 

k=0 

(2.15) 

Un = Un{1)= E U{n,k) 
k=0 

and 

Vn<z)= E V(n,k)zk 

k=0 

(2.16) 

Vn = Vn(1) = E V(n,k). 
k=0 

Clearly Un is the total number of set partitions satisfying (2.6) and (2.7), while Vn is the total number of set 
partitions satisfying (2.6) and (2.8). 

By (2.13) and (2.15) we have 

(2.17) E Un(z)^ = exp(zsmhx) 

n=0 

and by (2.14) and (2.15) 

(2.18) E Vn(z)*r = exp(z(co$hx- D). 
n! 

n=0 

Differentiating (2.17) with respect to x we get 

E xn 

Un+i(z) — = z coshxex/? (zs\n\\x). 
n! 

n=0 

This implies 

(2.19) Un+1(z) = z E (2
n

r) Un„2r(z). 

Differentiation of (2.17) with respect to z gives 

Z xn 

U'Jz) —- = smhxexp (zslnhx) 77 n! 
n=0 

so that 

(2.20) U'n(z)= E [ 2 r 1 l ) Un-2r-1<z). 

2r<n 

Put F(x,z) = exp (z sinh x). Since 
?\2 

Z~Y F(x,z) = si n h2 x F(x,z), 
oz 

—~F(x,z) = —fz coshx)F(xfz) = (z2 cosh2 x +z sinhx)F(x,z), 
dxz oX 
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it follows that 
-2-2 F(xfz) = z\F(x,z) + z ±F(x,z) + z2 ^ F(xfz). 
dx2 dz dz2 

This implies 
(2.21) Un+2(z) = z2Un(z)+zU'n(z) +z2U'n(z) = z2Un(z) + (zDz)

2Un(z) 
and therefore 
(2.22) Ufa + 2,k) = U(n, k-2) + k2U(n,k). 

This splits into the following pair of recurrences 
, t i U(2n + 2f 2k) = U(2n, 2k-2) + 4k2U(2n, 2k) 
(2.23) < 0 

\ U(2n+1,2k+1) = U(2n- I 2k - 1) +(2k+1)2U(2n - 1,2k+ 1). 
To get explicit formulas for Ufn,k) we return to (2.13). We have 

exp(zs\„hx) = £ tiff*- (e*-e-x)k = £ ^ ^ (-1)k (*) a*"-*1* 
k=0 k=0 j=0 

n=0 k=0 j=0 

which yields 
k 

(2.24) U(n,k) = -±- V (~1)k I k)(k-2j)n. 

Similarly, since cosh x - 1 = 2 sinh2 Vax, 
2Kkf j=0 

exp (z fcoshx - 1)) = exp (2 sinh2 %x) = £ (^j- (ey'x - e-
y*x)2k 

K / k=0 

k 

k=0 ' j=0 

. 2k 

n=0 2k<n j=0 

we get 
2k 

(2.25) l/f/7,iU - —1- £ r-/;y' M M ft-//7 . 
2kk! j=0 \ J I 

Comparing (2.25) with (2.24), we get 

(2.26) V(2n, k) = — ̂ Z . U(2n, 2k). 

Thus the first of (2.23) gives 
(2.27) V(2n +2fk) = (2k - 1)V(2n, k-1) + k2V(2n, k). 

If we put 

(2.28) V(2n,k) = 4 ™ V'(n,k), 

(2.27) becomes 

22n-kk, 

2kk! 
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(2.29) V'(n + I k) = V'(n, k - 1) + k2V'(n, k). 
Returning to (2.18) we have 

Vn+i(z) —- = z sinhx exp (z (zoshx - 1)1 
n! 

n=0 

This implies 

(2.30) V*HM=* E l2r
n
+1) Vn~2r-l(z). 

2r<n V ' 

Differentiation of (2.18) with respect to z gives 

E x11 

V'n (z) — = fcosh x - 1) exp (z cosh x - 1) 
n! 

n=0 

which implies 

(2.31) 
V'nM* S (sr) V»-2r(z)-

0<r<2n 

It is evident from (2.15) and (2.19) that 

(2-32) Un+1 = E (2r) Un-2r-
2r<n 

Similarly from (2.30) and (2.16) we have 

(2-33) Vn+1 = E (2r
n
+1) Vn-2r-u 

2r<n 

Since Vn = 0 unlessn is even, we may replace (2.33) by 

n 

(2-34) V2n+2 = £ (22n
rtl)

V2n~2r. 
r=0 

It is easy to prove (2.32) and (2.34) directly by a combinatorial argument, exactly like the combinatorial proof 
of (1.16). 

The first few values of Un, V2n follow. 

U0 = Ux = U2 = 1, Ud = 2, U,= 5, U5 = 12, U6 = 36, 

K = V2 = I V4 = 4, V6 = 31, V, = 379. 
The following values of U(2n, 2k), V'(n,k), V(2n +1,2k+ 1) are computed by means of (2.23) and (2.29). 

U(2n, 2k) 

[\ k 

1 

2 

3 

4 

1 

1 

4 

16 

64 

2 

1 

20 

336 

3 

1 

56 

4 

1 j 
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U(2n + h 2k + 1) 

W\ 0 

| 1 

L 2 
| 3 

I 4 

0 

— 

1 

1 

10 

91 

820 

2 

1 

35 

966 

3 

1 

j 84 

4 

1 | 

V'(n, k) 

l\ k 

n ̂ ^ 
0 

1 

L 2 
3 
4 

0 1 

1 

5 

21 

85 

2 

1 

14 

147 

3 

1 

30 

4 

1 

For additional properties of U(n,k) see [2 ] . 
3. Put 

A ? - 7 

(3.1) Pn(z) = J2 U(2n-1,2k+1)z(z2-12)(z2-32)-(z2-(2k-1)2). 

k=0 

Then, by the second of*(2.23), 
n-1 

z2Pn M = Z U(2n ~ l 2 k + Vrt2 - l2Hz2 ~ 32) - (z2 - Vk ~ D2)[z2 - (2k + 1)2 - (2k + I)2] 
k=0 

n 

= ] T [U(2n - I 2k- 1) + (2k + 1)2U(2n -1,2k+ 1)]z(z2 - 12)(z2 - 32) ••• (z2 - (2k - 1)2) 

k=0 

so that 

= £ U(2n +1,2k+ 1)z(z2 - I2)(z2 - 32) - (z2 - (2k - 1)2), 

n=0 

z2Pn(z) = Pn+1(z). 
,2n-1 . S\ncePi(z) = z, it follows t h a t P ^ f z ^ z n"~' and (3.1) becomes 

A7--7 

(3.2) z2n'1 = £ U(2n -1,2k+ 1)z(z2 - 12)(z2 -32)- (z2 - (2k -1)2). 

k=o 

Similarly it follows from the first of (2.23) that 

/?-7 
(3.3) z2"-1 = Y. u(2n> 2k)z(z2 ~ 22><z2 ~ *2)'"(z2 ~ (2k ~ 2)2)-

k=0 



1976] SET PARTITIONS 335 

By (2.26), (2.28) and (3.2) we have also 
n-1 

<3-4> z2"'1 = X V'n(n,k)z(z2- i2)(z2-32)-(z2- (2k- 1)2). 
k=0 

Formula (1.17) forSi(n,k) suggests the following definitions. 

^ ^1/2^3 k1!k2!k3!-

where the summation is over all nonnegative k], k2f k3, •••, such that 

i n = kr1 + k2°3 + k3-5+-

\ k = kj + k2 + k3 + - ; 

JL, 2kl4k26k3 kf!k2Ik3f 

where the summation is over all nonnegative k-j, k2f k3/ ••• such that 

I n = kr2 + k2>4 + k3>6+-

\ k = ki + k2 + k3 + - . 

We observe that Ui(n,k) is the number of permutations of Zn with k cycles each of odd length while V'i(n,k) 
is the number of permutations of Zn with k cycles each of even length. 

It follows from (3.5) that 

(3.7) £ Z £/,M/j£V-(£jP 
n=0 k=0 

Similarly, by (3.6), 

(3.8) £ £ V1<„.k)*lzk = (1-x2f*Z 

n! n=0 2k<n 

so that 

(3.9) I / / M J = (^$i(n,k). 
2kn! 

1Az f 1 M „ \
 1/*z 

This is also clear if we compare (3.6) with (1.17). 
It is easily verified that 

''-«*'£(&) " - ' ( & ) 
If we put 

Ul.nh) = E Ui<n,k)zk 

k 

it follows from (3.7) that 

(3.10) Uhn+1(z)-n(n- 1)U1rn-i(z) = ziJtn(z) . 
This is equivalent to 
(3.11) Urfn + lk) = U7(n,k- 1) + n(n- 7)Ujfn- 1,k). 

Wotice that this recurrence is somewhat different in form from the familiar recurrence for Si(n,k). 

By expanding the right member of (3.7) we get 
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(3.12) Uhn(zj = n<j: 2r ( ; r / ) (K; 
r=1 

To verify directly that (3.12) implies (3.10) we take 

*U»M = nl £ r ft:}) | 2<r+ 1, ( * , ) +2r ( * ) \ 

r=1 

- . 'E^(? ) i^ ( ; r / ) - (^ i ) } . 
r=1 

On the other hand 
n+1 n-1 

UKn+1U)-n(n-1)Uhn-,(z} = (n+1)! £ 2r (^,) (?) -(n-1)n! ^ 2r fcz?) (? ) 
r= 1 r=1 

-«•' £ *- ( ? ) { * (;-- /)^ (;--;)[• 
It is evident from (3.5) that 

(3.13) *//f/7,W = 0 (n ^ k+1 fmod 2 ^ . 
This is also clear from either (3.10) or (3.11). 

By means of (3.10) we get 

Uu1(z) = z, Uh2(z) = z2, Uh3(z) = 2z+z3, 

U1A(z) = 8z2 + z4, U1/5(z) = 24z + 20z3 + z5. 
The number 

(3.14) Utn = Uhn(1) = £ U7(nfk) 

k 

evidently denotes the total number of permutations of Zn into cycles of odd length. By (3.12) we have 

(3.15) Uhn=nl£ 2r ( ^ / J ( f ) (n > 1). 
r=1 

Alternatively, by (3.7) and (3.17), 

£ u» xi, - (y^ ) * - <'+*>«-*2r* - «+*> £ (2n) ( I )2"-
n=0 n=0 

which yields 
(3.16) U1r2n = (2n)l P " ) 2~2n = (1.3.5 ~(2n- I))2, 

(3-17) Uh2n+1 = (2n + 1)! (2» ) 2~2n = (2n + 1)U1f2n . 



1976] SET PARTITIONS 

4. To obtain an array orthogonal to U(n,k) we consider the expansion 

(4-1) (4^r^-xrz = £ CnMjfj 
n=0 

If we denote the left member of (4.1) by F, we have 

sJT+X 

which gives 

¥ = - ? F, a-
dx m—2 ' 9x" 

F = / Z2_ _ XZ V 
2 I 7 + * * (1+x*)3*l 

(4.2) . f7+x a J ^ | * x | ^ = z 2 f . 
ax2 a* 

Substituting from (4.1) in (4.2) we get 

C„+2(z) +n(n- 1)Cn (z) + nCn (z) = z2Cn (z), 
so that 
(4.3) Cn+2(z) = (z2-n2)Cn(zJ. 

Since £ f l W = 7, C1(z) = z, it follows that 

( C2n(z) = z2(z2-22)(z2-42) •• (z2- (2n - 2)2) 
( 4 -4 ) t C2„+i(z) = z(z2- 12)(z2-32)-(z2-(2n- 1)2). 

Therefore (4.1) becomes 

(4.5) U1 +x2 - xFz = £ — ^ ^ - T f T T ^ - ^ x 

n=0 

z2(z2~22)-(z2(2n-2)2) v2n 
(2n)f 

+ V z(z2- 12)-(z2-(2n- 1)2) 2n+1 
La (2n+V! 

n=0 

If we differentiate both sides of (4.5) with respect to z and then putz = 0, we get 

\*(J77?-X) - - i (-vn 1---3-^fffr^ *2n+1 • 

Thus (4.5) becomes 

(2n + 1)1 
n=0 

(4.6) e*PL i ^JL^M^^A 
\ n=o ; 

V z2(z2-22)-(z2-(2n-2)2) y2n 
la (2n),

 x 

n=0 

+ V z&2 ~ 12)~(z2 ~(2n- V2) 2n+1 
L, (2n + J)/ x 

n=0 

Now replace* by ix andz by -iz and we get 
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(4.7) eXPh £ 12-32~(2n-V2£~}= ^ ^ g / r f ^ 
'' n=0 1 n=0 

+ V z(z2+ 12)(z2 + 32)-(z2 + (2n- I)2) v2n+1 
L. (2n + 1)! X 

n=0 

We now define W(n,k) by means of 
n 

z2(z2 + 22)(z2 + 42).» (z2 + (2n - 2)2) = £ W(2n, 2k)z2k 

k=0 
(4.8) 

z(z2 + 12)(z2 + 32) - (z2 + (2n - J}2) = £ W(2n + 1,2k+ 1)z 
k=0 

It follows at once from (3.2), (3.3) and (4.8) that 

<4-9> E f~ Dn~'W(2n, 2j)U(2j, 2k) - ^ f - 1)hkU(2n, 2j)W(2j, 2k) = « „ , * , 
j=k j=k 

n 

(4.10) Y* (~ Dn"iW(2n + 7, 2j + 1)U(2j +1,2k+ 1) 
j=k 

n 
= E (~ 1>hkU(2n + 1, 2j + 1)W(2j + I 2k-hi) = 5 „ , * . 

j=k 

By means of (4.7) we can exhibit W(n,k) in a form similar to (2.9) and (2.11). Indeed it is evident from (4.7) 
and (4.8) that 

(4-1D E E W(n,k)x~zk = exp\z £ f(n) j ^ 1 , 
n=n k=n x

 n=o " 

ffn) = 12-32-52 -(2n- 1)2. 

It follows from (4.11) that 

(4.12) W<n,k) - J\ ^ mllffffLEmJ^ 
(1!)kl(3!)k2(5!)k3-- kl!k2'«3!-

where the summation is over all nonnegative kj, k2, k3, ••• such that 
(4.13) n = kv1 + k2-3 + k3-5+-, k = k7 + k2 + k3 + - . 

Moreover, in view of the definition of U(n,k), we have the following combinatorial interpretation tfW(n,k)% 
W(n,k) is the number of weighted number partitions (4.13): to each partition we assign the weight 

q]_ (f(D)kl(f(2))k2(f(3))k3~ 

(Wkl(3!)k2(5/)k3- kl!k2lk3! 

n=0 k=0 n=0 

where for brevity we put 

A different interpretation is suggested by (4.8). 
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5. We now return to Problem 1 as stated In the beginning of §2. 
Let T(n,k) denote the number of set partitions of Zn into k blocks 

B1,B2,--Bk 

of unequal length. Then it is evident that we have the generating function 

(5-D E E T{n,k)4 zk = 5 (l+*^) -
" " n n=1 \ n I 

n=0 k n 7 

This is equivalent to 
(5.2) m,k) = Z —r-r—r -

" nj!n2!—n^! 

where the summation is over all n 7, n2f —, % such that 
(5.3) n = n-i + ri2+ ••• + ni<, nj > n2 > — > % > 0. 
In other words, T(n,k) can be thought of as a weighted number partition: to each partition (5.3) we assign the 
weight 

n! 
n-ff n2!' — n^f 

this weight is of course the number of admissible set partitions corresponding to the given number partition. 
We can define a function that includes T(n,k), U(n,k), V(n,k) as special cases. Let 

(5.4) £ = (r1,r2,r3f>") 
be a sequence in which rj is either a nonnegative integer or infinity. Let S(n,k\r) denote the number of set par-
titions of Zn into k blocks Bj, B2, —, B^ with the requirement that, for each/, there are at most ry blocks of 
length/ Thus, for example, we have 

I
S(n,k) r = K o o , oo, ...) 

U(n,k) r = (~ 0,00,0, •) 
V(n,k) ~r= (0, »,Q.-..~) 
T(n,k) ~r= (1, 1, 1, -) 

For an arbitrary sequence (5.4) we have the generating function 

n=0 k J ' x k=0 ' ' ' I 

anJ 

k 

Clearly (5.6) reduces to a known result in each of the cases (5.5). 
We shall now obtain some more explicit results for the enumerant T(n,k). It is convenient to define 

(5-7) Tn(z) = E T(n,k)z 
k 

and 

(5.8) Tn = Tn(1) = E T(n,k). 
k 

Then, by (5.1), 

(5.9) E , j n u ) £ = n ( / - ' A 
n=0 

Put 
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F = F(x,z) = 5 (i+xOf) m 
n=1 \ n! I 

Then it is easily verified that 

(5.10) log F(x,z) = £ Fn(z)^ , 
n! 

n=1 
where 

(5.11) Fn(z) = E (-Vs-1 -^--zs 

rs=n 

Differentiating (5.10) with respect t o * , we get 

Fx(x,z) _ ~ 

s(r!)s 

This implies the recurrence 

(5.12) 

F(x,z) 

Differentiating (5.10) with respect to 
r=0 

z, we get 

Fz(x,z) 

F(x,z) 

n=0 

(") 

n=1 

rn+1K %T 

Fr+l(z)Tn-

F'nlz) 
Xn 

n! 

rk) 

and therefore 
n 

(5.13) r„(z)= £ (n\ F'n(z)Tn.r(z). 
r=1 ^ 

Written at length, (5.13) becomes 

£ kT(n,k)zk - £ (" ) T(n-r,j) £ <-ir1 J±-
._* \ ' ._. ftl)S 

(5.14) i^ KIW,KJZ' = 2^ I "r I nn-r,j) 2^ i-V ' -—z' 
r=1 st=r 

This gives 

s 
(tns 

(5.15) kT(n,k) = E (-IIs'7 (n
t) ^ T(n-st,k-s). 

(KsKn { ' <t!)S 

S<t 
It is obvious that 

(5.16) T(n,1) = 1 (n > 1). 

Using (5.14) we get 

(5.17) T(n,2) = y2(2
n-2)-V2 ( £ ) - Sln,2) - % fn/2 \ . 

If we put 

(5.18) Gk(x) = £ r ^ W ^ 7 
n 

and 

(5.19) / / , W = V * ^ ! , 
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then by (5.14) 

(5-20) kGk(x) = E (-Ds-1Hs(x)Gk-s(x). 

s=1 

Thus for example 
Gj(x) = H7(x) = ex- I 2!G2(x) = H*(x)-H2(x), 3!G3(x) = H^fx)- 3H-,(x)H2(x) + 2H3(x) 
and so on. 

If we takez= / in (5.12) we get the recurrence 

(5.21) Tn+1 = E ([
n

r\FrH(VTn.r. 

r=0 
Unfortunately the numbers 

^ • ^ ^ ' ^ 
rs=n 

are not simple. We note that 

<5-22> E F"f1,£- E -~^ HsM-
n=1 " s=1 

Analogous to (5.2) we may define 

(5.23) 7 - ; M ; = y — — — , 
Z-r n1n2-nk 

where again the summation is over all n /, n2, —, nk such that 

n = n-i +n2 + - + nk, /7; > n2 > — > nk > 0. 

Then T-j(nfk) denotes the number of permutations of Zn with k cycles of unequal length. From (5.23) we ob-
tain the generating function 

(5.24) 
n=0 k 

As above we define 
,—n i. H i 

Ti,n(z> = E Ti(n,k)zk. Ttn = Thn(1) = E Tj(ntk). 
k k 

We can obtain recurrences for Tj(nfk) and Tin similar to those for T(n,k) and Tn. In particular we have 
n 

(5.25) Ttn + 1 = E ( ? ) F1,r+l(DTl,n-r, 
r=0 

where 

f / ^ = E (-Vs"1 ^. 

We remark that 7"7//7 is the total number of permutations of Zn with cycles of unequal length. Note that 

(5.26) E T1n
x-= n [1 + *-

' n-f n=1 \ n 
n=1 

Finally, as in (5.4), let 
(5.27) r = (rhr2,r3,-) 
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be a sequence in which each /y is either a nonnegative integer or infinity. LetS/ (n,k\r) denote the number of 
permutations 7r in Zn with the requirement that, for each i, the number of cycles of length / in n is at most/*/. 
Then 

S7(n,k) r = (00/00,00,...; 

U1(n,k) r = (~,0.~.Q,.~) 
V1(n,k) r= (0, 00, 0, oof ...) 

Trfn.k) r = (1, 1, 1,-). 

For an arbitrary sequence (5.27) we have the generating function 

(,28) £ £ w i ^ - - . n { Ejf (f)k\. 
n=0 k ' J 7 X k=Q ' J 

The following question is of some interest. For what sequences (5.27) will the orthogonality relations 
n 

(5.29) £ (-V^JSi(n,/k}S(/,k\L) 
i=k 

n 

= E (-1)hkS(n,j\£)Si(j,k\LJ = Sn,k 
j=k 

be satisfied? 
Alternatively we may ask for what pairs of sequences/^ will the orthogonality relations 

n n 

(5.30) £ (-Vn-JS7(nJ\L)S(/,k\s) = £ (-1)hkS(n,j\sJS1(i,k\rJ = bPfk 

j=k j=k 

be satisfied? 
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