ON THE PRIME FACTORS OF $\binom{n}{k}$

P. ERDÖS

Hungarian Academy of Sciences, Budapest, Hungary and

R. L. GRAHAM

Bell Laboratories, Murray Hill, New Jersey

A well known theorem of Sylvester and Schur (see [5]) states that for $n \ge 2k$, the binomial coefficient $\binom{n}{k}$ always has a prime factor exceeding k. This can be considered as a generalization of the theorem of Chebyshev: There is always a prime between m and 2m. Set

$$\binom{n}{k} = u_n(k)v_n(k)$$

with

$$u_n(k) = \prod_{\substack{p^{\alpha} \parallel {n \choose k}}} p^{\alpha}, \quad v_n(k) = \prod_{\substack{p^{\alpha} \parallel {n \choose k}}} p^{\alpha}.$$

In [4] it is proved that $v_n(k) > u_n(k)$ for all but a finite number of cases (which are tabulated there).

In this note, we continue the investigation of $u_n(k)$ and $v_n(k)$. We first consider $v_n(k)$, the product of the large prime divisors of $\binom{n}{k}$.

Theorem.

$$\max_{1 \le k \le n} v_n(k) = e^{\frac{n}{2}(1+o(1))}$$

Proof. For $k < \epsilon n$ the result is immediate since in this case $\binom{n}{k}$ itself is less than $e^{n/2}$. Also, it is clear that the maximum of $v_n(k)$ is not achieved for k > n/2. Hence, we may assume $\epsilon n \le k \le n/2$. Now, for any prime

$$p \in \left(\frac{n-k}{r}, \frac{n}{r} \right)$$

with $p \ge k$ and $r \ge 1$, we have $p | v_n(k)$. Also, if $k^2 > n$ then $p^2 / v_n(k)$ so that in this case the contribution to $v_n(k)$ of the primes

$$p \in \left(\frac{n-k}{r}, \frac{n}{r}\right]$$

is (by the Prime Number Theorem (PNT)) just $e^{\frac{1}{r}(t+o(1))}$. Thus, letting $\frac{n}{t+1} < k \le \frac{n}{t}$, we obtain

$$v_{n}(k) = \exp \left[\left(\sum_{r=1}^{t-1} \frac{k}{r} + \left(\frac{n}{t} - k \right) \right) \right] (1 + o(1)) = \exp \left[\left(\frac{n}{t} \sum_{r=1}^{t-1} \frac{1}{r} \right) (1 + o(1)) \right] \frac{n}{2} (1 + o(1))$$

 $\leq e^2$ and the theorem is proved.

It is interesting to note that since

$$\frac{n}{t} \sum_{r=1}^{t-1} \frac{1}{r} = \frac{1}{2}$$

for both t = 2 and t = 3 then

$$\lim_{n} v_n(k)^{1/n} = e^{1/2}$$

for any $k \in \left(\frac{n}{3}, \frac{n}{2}\right)$.

In Table 1, we tabulate the least value $k^*(n)$ of k for which $v_n(k)$ achieves its maximum value for selected values of $n \le 200$. It seems likely that infinitely often $k^*(n) = \frac{n}{2}$ but we are at present far from being able to prove this.

		Id	nie i		
<u>n</u> _	<u>k*(n)</u>	<u>n</u>	<u>k*(n)</u>	<u>n</u>	<u>k*(n)</u>
2	1	10	2	18	8
3	1	11	3	19	9
4	2	12	6	20	10
5	2	13	4	50	22
6	2	14	4	100	42
7	3	15	5	200	100
8	4	16	6		
9	2	17	7		

Note that

$$v_{2}(0) < v_{2}(1) < v_{2}(2) < v_{2}(3)$$

It is easy to see that for n > 7, the $v_n(k)$ cannot increase monotonically for $0 \le k \le \frac{n}{2}$.

Next, we mention several results concerning $u_n(k)$. To begin with, note that while $u_n(k) = 1$ for $0 \le k \le \frac{n}{2} = \frac{7}{2}$, this behavior is no longer possible for n > 7. In fact, we have the following more precise statement.

Theorem. For some $k \leq (2 + o(1)) \log n$, we have $u_n(k) > 1$.

Proof. Suppose $u_n(k) = 1$ for all $k \le (2 + \epsilon) \log n$. Choose a prime $p < (1 + \epsilon) \log n$ which does not divide n + 1. Such a prime clearly exists (for large n) by the PNT. Since $p \nmid n + 1$ then for some k with p < k < 2p,

$$p^{2}(n(n-1)\cdots(n-k+1)), p^{2}/k$$

Thus, $p | u_n(k)$ and since

$$k < 2p < (2+2\epsilon) \log n$$
,

the theorem is proved.

In the other direction we have the following result.

Fact. There exist infinitely many *n* so that for all $k \le (1/2 + o(1)) \log n$, $u_n(k) = 1$.

Proof. Choose $n + 1 = [2.c.m. \{1, 2, \dots, t\}]^2$. By the PNT, $n = e^{(2+o(1))t}$, Clearly, if $m \le t$ then $m \nmid \binom{n}{t}$.

$$u_n(k) = 1$$
 for $k \leq \left(\frac{1}{2} + o(1)\right) \log n$

as claimed.

In Table 2 we list the least value $n^{*}(k)$ of n such that $u_{n}(i) = 1$ for $1 \le i \le k$

	Table 2
<u>k</u>	<u>n*(k)</u>
1	1
2	2
3	3
4	7
5	23
6	71

$$u_n(k) < n^{1+\epsilon}$$

for k > 3 and large *n*. It is well known that if $p^{\alpha} \begin{pmatrix} n \\ k \end{pmatrix}$ then $p^{\alpha} \le n$. Consequently,

$$u_n(k) \leq n^{\pi(k)},$$

where $\pi(k)$ denotes the number of primes not exceeding k. It seems likely that the following stronger estimate holds: 1411/4 - 1 1/1 ... (*)

$$u_n(k) < n^{(1+o(1))(1-\gamma)\pi(k)}, \quad k \ge 5$$

where γ denotes Euler's constant. It is easy to prove (*) for certain ranges of k. For example, suppose k is relatively large compared to n, say, k = n/t for a large fixed t. Of course, any prime $p \in (n - n/t, n)$ divides $v_n(k)$ and by the PNT

$$\prod_{n(1-1/t)$$

More generally, if $rp \in (n - n/t, n)$ with r < t then $p \ge k$ and $p |v_n(k)|$ so that again by the PNT

 $\frac{n}{r}$

$$\prod_{\substack{\left(1-\frac{1}{t}\right)$$

Thus

Thus,

$$\begin{aligned}
\Psi_n(k) &\geq \prod_{\substack{1 \leq r \leq t \ n \ t}} \prod_{\substack{t \leq r \leq t \ r}} p = \exp\left((1 + o(1)) \sum_{\substack{1 \leq r \leq t \ r}} \frac{1}{r}\right) \frac{n}{t} \\
&= \exp\left((1 + o(1))(\log t + \gamma)\right) \frac{n}{t}.
\end{aligned}$$

But by Stirling's formula we have

$$\begin{pmatrix} n \\ n/t \end{pmatrix} = e^{\frac{n}{t}\log t + \frac{n}{t} + o\left(\frac{n}{t}\right)}$$

$$u_n(k) = \begin{pmatrix} n \\ k \end{pmatrix} / v_n(k) \le e^{\frac{n}{t}\log t + \frac{n}{t} + o\left(\frac{n}{t}\right) - (1 + o(1))(\log t + \gamma)\frac{n}{t}}$$

$$= e^{(1 + o(1))(1 - \gamma)\frac{n}{t}} = n^{(1 + o(1))(1 - \gamma)\pi(k)}$$

which is just (*).

In contrast to the situation for $v_n(k)$, the maximum value of $u_n(k)$ clearly occurs for $k \ge \frac{n}{2}$. Specifically, we have the following result.

The orem. The value $\hat{k}(n)$ of k for which $u_n(k)$ assumes its maximum value satisfies

$$\hat{k}(n) = (1+o(1))\left(\frac{e}{e+1}\right) n$$
.

Proof. Let k = (1 - c)n. For $c \leq \frac{1}{2}$,

$$v_n(k) = \prod_{\substack{n-k \le p \le n}} p = e^{(1+o(1))cn}$$

Since

$$\binom{n}{k} = \binom{n}{cn} = e^{-(c \log c + (1-c)\log (1-c))(1+o(1))n}$$

then

$$u_n(k) = \binom{n}{k} / v_n(k) = e^{-(1+o(1))(c+\log c^c(1-c)^{1-c})n}.$$

A simple calculation shows that the exponent is maximized by taking $c = \frac{1}{e+1} = 0.2689 \dots$.

[NOV.

Concluding remarks. We mention here several related problems which were not able to settle or did not have time to investigate. One of the authors [8] previously conjectured that $\binom{2n}{n}$ is never squarefree for n > 4 (at present this is still open). Of course, more generally, we expect that for all a, $\binom{2n}{n}$ is always divisible by an a^{th} power of a prime > k if $n > n_p(a, k)$. We can show the much weaker result that n = 23 is the largest value of n for which all $\binom{n}{k}$ are squarefree for $0 \le k \le n$. This follows from the observation that if p is prime and $p^{\alpha} \binom{n}{k}$ for any k then $p^{\beta} | n \neq 1$, where

$$p^{\beta} \geq \frac{n+1}{p^{\alpha}-1} .$$

Thus, $2^2 \not\mid \binom{n}{k}$ for any k implies $2^\beta \mid n+1$ where $2^\beta \ge \frac{n+1}{3}$. Also, $3^2 \not\mid \binom{n}{k}$ for any k implies $3^{\gamma} \mid n+1$ where $3^{\gamma} \ge \frac{n+1}{8}$. Together these imply that $d = 2^\beta 3^{\gamma} \mid n+1$ where $d \ge (n+1)^2/24$. Since d cannot exceed n+1 then $n+1 \le 24$ is forced, and the desired result follows.

For given *n* let f(n) denote the largest integer such that for some *k*, $\binom{n}{k}$ is divisible by the $f(n)^{th}$ power of a prime. We can prove that $f(n) \to \infty$ as $n \to \infty$ (this is not hard) and very likely $f(n) > c \log n$ but we are very far from being able to prove this. Similarly, if F(n) denotes the largest integer so that for all *k*, $1 \le k < n$, $\binom{n}{k}$ is divisible by the $F(n)^{th}$ power of some prime, then it is quite likely that $\overline{\lim} F(n) = \infty$, but we have not proved this.

Let P(x) and p(x) denote the greatest and least prime factors of x, respectively. Probably

$$P\left(\binom{n}{k}\right) > \max(n-k, k^{1+\epsilon})$$

but this seems very deep (for related results see the papers of Ramachandra and others [11], [12]).

J. L. Selfridge and P. Erdös conjectured and Ecklund [1] proved that $p\left(\binom{n}{k}\right) < \frac{n}{2}$ for k > 1, with the unique exception of $p\left(\binom{7}{3}\right) = 5$. Selfridge and Erdös [9] proved that

$$\rho\left(\binom{n}{k}\right) < \frac{c_1 n}{k^{c_2}}$$

and they conjecture

$$p\left(\binom{n}{k}\right) < \frac{n}{k} \quad \text{for} \quad n > k^2$$

Finally, let $d\left(\binom{n}{k}\right)$ denote the greatest divisor of $\binom{n}{k}$ not exceeding *n*. Erdös originally conjectured that $d\binom{n}{k} > n - k$ but this was disproved by Schinzel and Erdös [13]. Perhaps it is true however, that $d_n > cn$ for a suitable constant *c*.

For problems and results of a similar nature the reader may consult [2], [3], [6], [7] or [10].

REFERENCES

- 1. E. Ecklund, Jr., "On Prime Divisors of the Binomial Coefficients," *Pac. J. of Math.*, 29 (1969), pp. 267–270.
- 2. E. Ecklund, Jr., and R. Eggleton, "Prime Factors of Consecutive Integers," *Amer. Math. Monthly*, 79 (1972) pp. 1082–1089.
- E. Ecklund, Jr., P. Erdös and J. L. Selfridge, "A New Function Associated with the Prime Factors of *Math. Comp.*, 28 (1974), pp. 647–649.
- 4. E. Ecklund, Jr., R. Eggleton, P. Erdös and J. L. Selfridge, "On the Prime Factorization of Binomial Coefficients," to appear.
- 5. P. Erdös, "On a Theorem of Sylvester and Schur," J. London Math. Soc., 9 (1934), pp. 282-288.
- P. Erdös, "Some Problems in Number Theory," Computers in Number Theory, Proc. Atlas Symp., Oxford, 1969, Acad. Press (1971), pp. 405-414.

- 7. P. Erdös, "Über die Anzahl der Primzahlen-von $\binom{n}{k}$, "Archiv der Math., 24 (1973).
- 8. P. Erdös, "Problems and Results on Number Theoretic Properties of Consecutive Integers and Related Questions," *Proc. Fifth Manitoba Conf. on Numerical Mathematics* (1975), pp. 25–44.
- 9. P. Erdös and J. L. Selfridge, "Some Problems on the Prime Factors of Consecutive Integers," *Pullman Conf. on Number Theory*, (1971).
- 10. P. Erdös, R. L. Graham, I. Z. Ruzsa and E. G. Straus, "On the Prime Factors of $\binom{2n}{n}$," Math Comp., 29 (1975), pp. 83–92.
- 11. K. Ramachandra, "A Note on Numbers with a Large Prime Factor II," *J. Indian Math. Soc.*, 34 (1970), pp. 39-48.
- 12. K. Ramachandra, "A Note on Numbers with a Large Prime Factor III," *Acta Arith.,* 19 (1971), pp. 49–62.
- 13. A. Schinzel, "Sur un Probleme de P. Erdös," *Coll. Math.*, 5 (1952), pp. 198–204.
