ON THE PRIME FACTORS OF $\binom{n}{k}$

P. ERDÖS
Hungarian Academy of Sciences, Budapest, Hungary
and
R. L. GRAHAM
Bell Laboratories, Murray Hill, New Jersey

A well known theorem of Sylvester and Schur (see [5]) states that for $n \geqslant 2 k$, the binomial coefficient $\binom{n}{k}$. always has a prime factor exceeding k. This can be considered as a generalization of the theorem of Chebyshev: There is always a prime between m and $2 m$. Set
with

$$
\binom{n}{k}=u_{n}(k) v_{n}(k)
$$

$$
u_{n}(k)=\prod_{\substack{p^{\alpha} \|\left(\begin{array}{l}
n \\
k
\end{array}\right)}}^{\left.\prod^{\alpha}, \quad v_{n}(k)=\prod_{\substack{p^{\alpha} \| \\
p \geq k}} p^{n} \begin{array}{l}
n \\
k
\end{array}\right)} p^{\alpha}
$$

In [4] it is proved that $v_{n}(k)>u_{n}(k)$ for all but a finite number of cases (which are tabulated there).
In this note, we continue the investigation of $u_{n}(k)$ and $v_{n}(k)$. We first consider $v_{n}(k)$, the product of the large prime divisors of $\binom{n}{k}$.

Theorem.

$$
\max _{1 \leqslant k \leqslant n} v_{n}(k)=e^{\frac{n}{2}(1+o(1))}
$$

Proof. For $k<\epsilon n$ the result is immediate since in this case $\binom{n}{k}$ itself is less than $e^{n / 2}$. Also, it is clear that the maximum of $v_{n}(k)$ is not achieved for $k>n / 2$. Hence, we may assume $\epsilon n \leqslant k \leqslant n / 2$. Now, for any prime

$$
p \in\left(\frac{n-k}{r}, \frac{n}{r}\right]
$$

with $p \geqslant k$ and $r \geqslant 1$, we have $p \mid v_{n}(k)$. Also, if $k^{2}>n$ then $p^{2} \nmid v_{n}(k)$ so that in this case the contribution to $v_{n}(k)$ of the primes

$$
p \in\left(\frac{n-k}{r}, \frac{n}{r}\right]
$$

$$
\begin{aligned}
v_{n}(k) & =\exp \left[\left(\sum_{r=1}^{t-1} \frac{k}{r}+\left(\frac{n}{t}-k\right)\right)\right](1+o(1))=\exp \left[\left(\frac{n}{t} \sum_{r=1}^{t-1} \frac{1}{r}\right)(1+o(1))\right] \\
& \leqslant e^{\frac{n}{2}(1+o(1))}
\end{aligned}
$$

and the theorem is proved.
It is interesting to note that since

$$
\frac{n}{t} \sum_{r=1}^{t-1} \frac{1}{r}=\frac{1}{2}
$$

for both $t=2$ and $t=3$ then

$$
\lim _{n} v_{n}(k)^{1 / n}=e^{1 / 2}
$$

for any $k \in\left(\frac{n}{3}, \frac{n}{2}\right)$.
In Table 1, we tabulate the least value $k^{*}(n)$ of k for which $v_{n}(k)$ achieves its maximum value for selected values of $n \leqslant 200$. It seems likely that infinitely often $k^{*}(n)=\frac{n}{2}$ but we are at present far from being able to prove this.

Table 1

\underline{n}	$\frac{k^{*}(n)}{n}$	\underline{n}	$\frac{k^{*}(n)}{n}$	\underline{n}	$\underline{k^{*}(n)}$
2	1	10	2	18	8
3	1	11	3	19	9
4	2	12	6	20	10
5	2	13	4	50	22
6	2	14	4	100	42
7	3	15	5	200	100
8	4	16	6		
9	2	17	7		

Note that

$$
v_{7}(0)<v_{7}(1)<v_{7}(2)<v_{7}(3) .
$$

It is easy to see that for $n>7$, the $v_{n}(k)$ cannot increase monotonically for $0 \leqslant k \leqslant \frac{n}{2}$.
Next, we mention several results concerning $u_{n}(k)$. To begin with, note that while $\dot{u}_{7}(k)=1$ for $0 \leqslant k \leqslant \frac{n}{2}=$ $\frac{7}{2}$, this behavior is no longer possible for $n>7$. In fact, we have the following more precise statement.

Theorem. For some $k \leqslant(2+o(1)) \log n$, we have $u_{n}(k)>1$.
Proof. Suppose $u_{n}(k)=1$ for all $k \leqslant(2+\epsilon) \log n$. Choose a prime $p<(1+\epsilon) \log n$ which does not divide $n+1$. Such a prime clearly exists (for large n) by the PNT. Since $p \nmid n+1$ then for some k with $p<k<2 p$,

$$
p^{2} \mid n(n-1) \cdots(n-k+1), \quad p^{2} \backslash k!
$$

Thus, $p \mid u_{n}(k)$ and since

$$
k<2 p<(2+2 \epsilon) \log n
$$

the theorem is proved.
In the other direction we have the following result.
Fact. There exist infinitely many n so that for all $k \leqslant(1 / 2+o(1)) \log n, u_{n}(k)=1$.
Proof. Choose $n+1=[\text { e.c.m. }\{1,2, \cdots, t\}]^{2}$. By the PNT, $n=e^{(2+o(1) / t}$, Clearly, if $m \leqslant t$ then $m \nmid\binom{n}{t}$. Thus,

$$
u_{n}(k)=1 \text { for } k \leqslant\left(\frac{1}{2}+o(1)\right) \log n
$$

as claimed.
In Table 2 we list the least value $n^{*}(k)$ of n such that $u_{n}(i)=1$ for $1 \leqslant i \leqslant k$
Table 2

$\frac{k}{1}$	$\frac{n^{*}(k)}{1}$
2	2
3	3
4	7
5	23
6	71

Of course, for $k \leqslant 2, u_{n}(k)=1$ is automatic. By a theorem of Mahler [11], it follows that

$$
u_{n}(k)<n^{1+\epsilon}
$$

for $k \geqslant 3$ and large n. It is well known that if $p^{\alpha} \left\lvert\,\binom{ n}{k}\right.$ then $p^{\alpha} \leqslant n$. Consequently,

$$
u_{n}(k) \leqslant n^{\pi(k)},
$$

where $\pi(k)$ denotes the number of primes not exceeding k. It seems likely that the following stronger estimate holds:

$$
\begin{equation*}
u_{n}(k)<n^{(1+o(1))(1-\gamma) \pi(k)}, \quad k \geqslant 5 \tag{*}
\end{equation*}
$$

where γ denotes Euler's constant. It is easy to prove ($*$) for certain ranges of k. For example, suppose k is relatively large compared to n, say, $k=n / t$ for a large fixed t. Of course, any prime $p \in(n-n / t, n)$ divides $v_{n}(k)$ and by the PNT

$$
\prod_{n(1-1 / t)<p<n} p=e^{(1+o(1) / n / t}
$$

More generally, if $r p \epsilon(n-n / t, n)$ with $r<t$ then $p \geqslant k$ and $p \mid v_{n}(k)$ so that again by the PNT

Thus

$$
\frac{n}{r}\left(1-\frac{1}{t}\right)^{\Pi}<p<\frac{n}{r} \quad p=e^{(1+o(1)) n / r t}
$$

$$
\begin{gathered}
v_{n}(k) \geqslant \prod_{1 \leqslant r<t} \frac{n}{t}\left(1-\frac{1}{t}\right)<p<\frac{n}{r} \\
\quad=\exp ((1+o(1))(\log t+\gamma)) \frac{n}{t} .
\end{gathered}
$$

But by Stirling's formula we have

$$
\binom{n}{n / t}=e^{\frac{n}{t} \log t+\frac{n}{t}+o}\left(\frac{n}{t}\right)
$$

Thus,

$$
\begin{gathered}
\left.\dot{u_{n}(k)=} \begin{array}{c}
n \\
k
\end{array}\right) / v_{n}(k) \leqslant e^{\frac{n}{t} \log t+\frac{n}{t}+o}\binom{n}{t}-(1+o(1))(\log t+\gamma) \frac{n}{t} \\
=e^{(1+o(1))(1-\gamma) \frac{n}{t}}=n^{(1+o(1))(1-\gamma) \pi(k)}
\end{gathered}
$$

which is just (*).
In contrast to the situation for $v_{n}(k)$, the maximum value of $u_{n}(k)$ clearly occurs for $k \geqslant \frac{n}{2}$. Specifically, we have the following result.
The orem. The value $\hat{k}(n)$ of k for which $u_{n}(k)$ assumes its maximum value satisfies

$$
\hat{k}(n)=(1+o(1))\left(\frac{e}{e+1}\right) n .
$$

Proof. Let $k=(1-c) n$. For $c \leqslant 1 / 2$,

$$
v_{n}(k)=\prod_{n-k<p \leqslant n} p=e^{(1+o(1) / c n}
$$

Since

$$
\binom{n}{k}=\binom{n}{c n}=e^{-(c \log c+(1-c) \log (1-c))(1+o(1)) n}
$$

then

$$
u_{n}(k)=\binom{n}{k} / v_{n}(k)=e^{-(1+o(1))\left(c+\log c^{c}(1-c)^{1-c}\right) n} .
$$

A simple calculation shows that the exponent is maximized by taking $c=\frac{1}{e+1}=0.2689 \ldots$.

Concluding remarks. We mention here several related problems which were not able to settle or did not have time to investigate. One of the authors [8] previously conjectured that $\binom{2 n}{n}$ is never squarefree for $n>4$ (at present this is still open). Of course, more generally, we expect that for all a, $\binom{2 n}{n}$ is always divisible by an $a^{\text {th }}$ power of a prime $>k$ if $n>n_{0}(a, k)$. We can show the much weaker result that $n=23$ is the largest value of n for which all $\binom{n}{k}$ are squarefree for $0 \leqslant k \leqslant n$. This follows from the observation that if p is primeand $p^{\alpha} \chi\binom{n}{k}$ for any k then $p^{\beta} \mid n+1$, where

$$
p^{\beta} \geqslant \frac{n+1}{p^{\alpha}-1} .
$$

Thus, $2^{2} X\binom{n}{k}$ for any k implies $\left.2^{\beta}\right|_{n}+1$ where $2^{\beta} \geqslant \frac{n+1}{3}$. Also, $3^{2} X\binom{n}{k}$ for any k implies $\left.3^{\gamma}\right|_{n+1}$ where $3^{\gamma} \geqslant \frac{n+1}{8}$. Together these imply that $d=\left.2^{\beta} 3^{\gamma}\right|_{n+1}$ where $d \geqslant(n+1)^{2} / 24$. Since d cannot exceed $n+1$ then $n+1 \leqslant 24$ is forced, and the desired result follows.
For given n let $f(n)$ denote the largest integer such that for some $k,\binom{n}{k}$ is divisible by the $f(n)^{\text {th }}$ power of a prime. We can prove that $f(n) \rightarrow \infty$ as $n \rightarrow \infty$ (this is not hard) and very likely $f(n)>c \log n$ but we are very far from being able to prove this. Si milarly, if $F(n)$ denotes the largest integer so that for all $k, 1 \leqslant k<n,\binom{n}{k}$ is divisible by the $F(n)^{\text {th }}$ power of some prime, then it is quite likely that $\overline{\lim } F(n)=\infty$, but we have not proved this.
Let $P(x)$ and $p(x)$ denote the greatest and least prime factors of x, respectively. Probably

$$
P\left(\binom{n}{k}\right)>\max \left(n-k, k^{1+\epsilon}\right)
$$

but this seems very deep (for related results see the papers of Ramachandra and others [11], [12]).
J. L. Selfridge and P. Erdös conjectured and Ecklund [1] proved that $p\left(\binom{n}{k}\right)<\frac{n}{2}$ for $k>1$, with the unique exception of $p\left(\binom{7}{3}\right)=5$. Selfridge and Erdös [9] proved that

$$
p\left(\binom{n}{k}\right)<\frac{c_{1} n}{k^{c_{2}}}
$$

and they conjecture

$$
p\left(\binom{n}{k}\right)<\frac{n}{k} \text { for } n>k^{2} .
$$

Finally, let $d\left(\binom{n}{k}\right)$ denote the greatest divisor of $\binom{n}{k}$ not exceeding n. Erdös originally conjectured that $d\left(\binom{n}{k}\right)>n-k$ but this was disproved by Schinzel and Erdös [13]. Perhaps it is true however, that $d_{n}>c n$ for a suitable constant c.
For problems and results of a similar nature the reader may consult [2] , [3] , [6] , [7] or [10].

references

1. E. Ecklund, Jr., "On Prime Divisors of the Binomial Coefficients," Pac. J. of Math., 29 (1969), pp. 267270.
2. E. Ecklund, Jr., and R. Eggleton, "Prime Factors of Consecutive Integers," Amer. Math. Monthly, 79 (1972) pp. 1082-1089.
3. E. Ecklund, Jr., P. Erdös and J. L. Selfridge, "A New Function Associated with the Prime Factors of $\binom{n}{k}$, Math. Comp., 28 (1974), pp. 647-649.
4. E. Ecklund, Jr., R. Eggleton, P. Erdös and J. L. Selfridge, "On the Prime Factorization of Binomial Coefficients," to appear.
5. P. Erdös, "On a Theorem of Sylvester and Schur," J. London Math. Soc., 9 (1934), pp. 282-288.
6. P. Erdös, "Some Problems in Number Theory," Computers in Number Theory, Proc. Atlas Symp., Oxford, 1969, Acad. Press (1971), pp. 405-414.
7. P. Erdös, ""Über die Anzahl der Primzahlen-von $\binom{n}{k}$," Archiv der Math., 24 (1973).
8. P. Erdös, "Problems and Results on Number Theoretic Properties of Consecutive Integers and Related Questions," Proc. Fifth Manitoba Conf. on Numerical Mathematics (1975), pp. 25-44.
9. P. Erdös and J. L. Selfridge, "Some Problems on the Prime Factors of Consecutive Integers," Pullman Conf. on Number Theory, (1971).
10. P. Erdös, R. L. Graham, I. Z. Ruzsa and E. G. Straus, "On the Prime Factors of $\binom{2 n}{n}$ " Math Comp., 29 (1975), pp. 83-92.
11. K. Ramachandra, "A Note on Numbers with a Large Prime Factor II," J. Indian Math. Soc., 34 (1970), pp. 39-48.
12. K. Ramachandra, "A Note on Numbers with a Large Prime Factor III," Acta Arith., 19 (1971), pp. 4962.
13. A. Schinzel, "'Sur un Probleme de P. Erdös," Coll. Math., 5 (1952), pp. 198-204.
** *
