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Good [3] showed that 

(1) £ -±- = 3 - ^ , n> 1. 
m=0 2m 2n 

The problem of summing this for/? -> °° was posed by Millin [8] . The bibliography at the end of this paper gives 
an idea of what has been done with such series and their extensions. A common thread may be found among 
many of these studies: explicit or implicit use is made of an interesting partition of the natural numbers. Our 
object here will be to discuss this partition and generalize it, as well as show other uses. Our main results are 
some series rearrangement formulas that are related to multi-sections but differ and do not seem to appear in 
the literature. 

Our first observation is that the set {(2k + 1)2n\k > 0, n > #} is identical to the set of all natural numbers. 
Holding either k or n fixed and letting the other variable assume all non-negative integers, we find that the nat-
ural numbers are generated as the union of countably many disjoint subsets of the naturals. Pictorially, every 
natural number appears once and only once in the array: 

15 17 19 ••• 1 
2 
4 
8 
16 
32 

3 
6 
12 
24 
48 
96 

5 
10 
20 
40 

7 
14 
28 

9 
18 
36 

11 
22 

13 
26 

This seems to be common knowledge in the mathematical community, but its use in forming interesting series 
rearrangements does not seem to be widely known or appreciated. The rearrangement theorem is as follows: 

(2> E f<n> - ~ I I f((2k+l)2n) 
n=1 k=0 n=0 

for an arbitrary function /provided only that the series on the left converges absolutely so that it can be re-
arranged at will. For a convergent series of positive terms, of course, the formula always holds. The theorem is 
used by Greig [4] to obtain the transformation 

(3> £ J 
n=1 

where 
r (1 + Fk_1)/Fk for even k, 

(4) Ck =\ 
^(1 + Fk.1)/Fk+2/F2k for odd k. 

The numbers Ck arose in his proof that (1) generalizes to 
67 

£ {ck-
1-). 

k=1 
/rodd 

a = 
2 
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1 k9n 1 

(5) £ jl— = Ck- ^ - - 7 , k.n > I 
m=0 k2m k2n 

but he did not make explicit use of (2) in determining (5), the numbers Ck being introduced in the course of 
an inductive proof. 

On the other hand, according to Hoggatt and Bicknell [5, p. 275, Method X ] , Carlitz used what is essentially 
(2) to sum (1) when/7 -* «>. To make this as clear as possible, we rephrase the argument as follows: With a,b 
the roots o f z 2 - z - 1 = 0, so that ab = -1, and a- b = y/5, then the Binet formula is Fn = (an - bn)/(a - b), 
and so 

= E 
n=1 c 

(a-b) 

a-b 

r ~b2 

E £* 
n=0 k=0 

= (a-

-(2k+ 

-b) 

1)2" 

E E 
n=l k=0 

k=0 

a-(2k< 

-2k-1 

-1)2n 

and the double series can be summed by using (2), so that the result follows since everything is then known by 
simple geometric sums. 

If we apply the same argument to the Lucas numbers, recalling that Ln= an' -/- bn, we find that 

lkg-(2k+D2n 

<6> E r~ - E E (-*)k 
n=1 2n n=1 k=0 

but the presence of the factor (-1) prevents us from going further as (2) cannot be applied then. Perhaps 
some other result can be found using (6). 

The formula 

(7) T ^ = --x—, \x\ < 7, 

L x E (x 
n=0 k=0 

and this is substantially the way that many related results can be found. 
For instance, either using (7) or going back to (2) again, we may set down the hyperbolic trigonometric ana-

logue of (1) which is done for/? -» °° in (22) below. 
We come now to the generalization of (2). Going first to mod 3, we have: 

(8) £ f(n) = 2 E f((3k+l)3n)+J£ £ f((3k+2)3n), 
n=1 k=0 n=0 k=0 n=0 

provided only that the series on the left converges absolutely. 
The two disjoint sets 

{(3k+1)3n\k > 0, n > 0} and {(3k + 2)3n\k > 0, n > O) 

form an interesting partition of the natural numbers. The two sets are easily put down in the arrays 

3romwi 

X 

1 - x 

E 
n=0 

ich [1 , p. 

- E 
n=1 

- E 
n=0 

24] 

xn 

1 -

1 

to 

= 

X 

• x 

K2" 
1 

2n+1 
- X 

X 

1 - x' 

Augustus De Morgan f 

E 
k=0 

2" 

Z 

E 
n=0 

> 

y(2k+1)2 
X 
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and 

The general case, mod m, is: 

(9) £ 
n=1 

1 
3 
9 

27 
81 

2 
6 

18 
54 

162 

fin) = 

4 
12 
36 

108 
324 

5 
15 
45 

135 
405 

m-1 

1 
21 
63 

8 
24 
72 

« 

10 
30 
90 

11 
33 
99 

13 
39 

14 
42 

£ £ £ «<mk + 
i=1 h =0 n= -o 

16 
48 

17 
51 

i)mnl — m > 2, 
=0 

provided the series on the left converges absolutely. 
We should remark that when f(n) is replaced by f(ri)xn we may use (9) and its special cases as a theorem on 

formal power series and matters of convergence may be ignored when we use such a formula to equate coeffic-
ients in proving combinatorial formulae. Tutte [9] has given an interesting new theory of formal power series. 

Formula (9) may be further generalized usefully. It is not difficult to see that multiples of powers of m may 
be removed from the set of natural numbers and we obtain the following nice result: 

(10 ) E E E f((mk+i)mn) = £ f(n) - £ f(mr+1nj, m > 2, 
1=1 k=0 n=0 n=1 n=1 r > O, 

= E f(n>- E f(mr+1nl m > 2> 
n=0 n=0 r > O, 

provided that the series converge absolutely. Notice that the series on the right may be written in an alternative 
manner when f(0) is defined as then the first terms cancel out. This allows us often to write a more elegant 
formula. 

We pause now to exhibit a neat application of (10) to derive a general formula found by Bruckman and Good 
[2] whose argument is tantamount to formula (10) but it was not explicitly stated. We have, with f(n) = xn, 

m-1 °° r n °° °° r+1 
(mk+i)m \^ vn \ ^ m n E E z^mk+ihn - L *"-£ 

/ = / k=0 n=0 n=0 n=0 
SO that 

1-x 

(11) 

r m-1 n 

-1-7W - E Z xim T. 
m n=0 i=1 k=0 

7 / _ V V yim" V xmll+1 k 

r m-1 n „ n+1 -1 r 1 vm' (m-1) n 

E E ^ ^ > = E . — ^ -,* < 
n=0 i=1 n=0 (1_xm )(1 __ xm j 

which proves the finite series result in [2] . This formula, of course, is the extension to values other than m =2 
of De Morgan's formula (7) and in a finite setting. 

We pause to exhibit a non-Fibonacci application of (10). For the Riemann Zeta function we find 
m-1 oo 

Us> - E -1 - E E —J— E ~L. *>>. 
n=l ns i=i k=o (mk+i)s

 n=0 msn 
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which simplifies to 
m-1 -

(12) ( / - - i ) Us) = Z £ . — * — , * > / , 
ms/ i=i k=0 (mk+if 

or 
m-1 

(13) (ms- DUs) = £ l(s,i/m), 
i=1 

in terms of Hurwitz' generalized Zeta function, which is defined by 

f (s,a) = ^2 / s > 1, a arbitrary, 
k=0 (k + a)s 

so that £(s, 1) = $(s). But formula (12) or (13) is not new. It is the same result found by using ordinary multi-
section modulo m. 

Ordinary multisection means the following formula: 
oo m oo 

(14) £ f(n) = T, E f(mk + i)t m>U 
n=1 i=1 k=0 

the result again being valid for absolutely convergent series on the left. 
Since we are speaking of multisection, it may be worthwhile to set down the formula corresponding to (14) 

for a finite series: 

n m-1 Lm , 
(15) £ f(k) = £ £ f(mk+i)t n-a+1 > m > 1 

k=a i=0 k_ I' a+m- 1-i 1 

where brackets denote the usual greatest integer function. 
Finite multisection in the form (15) has always been a favorite of the author, and it has two interesting fur-

ther special cases worth setting down for reference: 

mn-1 m-1 n-1 

(16) £ ffk) = J2 Yl f(mk + i>' m > 1, n > 1; 
k=0 i=0 k=0 

and 
mn m n-1 

(17) £ f(k) = J^ E f(mk + i)t m > 1, n > 0. 
k=0 i=1 k=0 

It is well known that there is an analogy between the formulas for Fibonacci-Lucas numbers and trigonomet-
ric functions. To every formula involving Fibonacci and Lucas numbers there is a corresponding formula in-
volving sines and cosines. We know that this is true because of the similarities between the Binet formulas 

(18) Fn=^LiAlf Ln = an + bn 

a — b 
and the Euler formulas 

„ i x -ix Qix , n-\x n 

(19) sinx = e— -=f—, cosx = e — f f - , i2 = -1. 

The same may be said for the hyperbolic functions: 

(20) sinh x = e~=-e-- , cosh x = ^ - ^ — , 
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and we merely cite, e.g., relations like sin 2x =2sinx cosx, sinh 2x = 2s\n\\x coshx, f ^ = FnLn to remind 
of the analogy. It is natural then to set down trigonometric analogues of formulas we have discussed above. 

The case/7 -»°° of (1) was 

(21) X ! TT~ = —.r^ = 2.381966012 - , 
n=0 2

n 

and the hyperbolic sine analogue is 

(22) T 1— = --?— = 1163953414 - . 
n=o s i n h ^ e~1 

When n -* °° in (5) the special case of Greig's formula is 

k > I (23) E -r- = Ck-^j-1, 
n=0 k2n Z 

Ck being given by (4), and the hyperbolic analogue is 

(24) £ 7—- = —-— x > 0. 
n=o s inni"7* ex- 1 

Although (7) and its congeners are often listed in compendia of series, I am not aware of any ready listing for 
them written in the hyperbolic form (24), not even (22). 

Possibilities exist for application to number theoretic functions. Since g.c.d. (mk + i, mn) = 1 for all / < / < 
m - 1, we may apply (2), (8), (9), (10) to multiplicative number theoretic functions as well as completely mul-
tiplicative functions. For instance, using Euler's 0-function, we find from (2), 

(25) T ^ = T T ^i2k + 1)())<2n> = T T (t)(2k + 1)(t)<2n> + T $(2k + 1) 

n=1 ns
 n-0 k=0 (2k+1)s2ns n=1 k=0 (2k+1)$2ns

 k=o(2k+1)s 

oo oo 

_i__ V URttJl + T MZLU1 s > 2, 
-n+1 ~ /n, L ^s ,̂ ~1 /n. , 1ts n=l 2nS~n+l

 k=0 (2k + If k=0 (2k + If 

which I have not seen stated elsewhere. Since we can also use ordinary multisection of series we have besides 

(26) £ ^i = £ aim + f mui , s > 2 
„=1 ns

 n=i (2nf k=o (2k+lf 

whence, upon comparing (25) and (26) we get the unusual formula 

(27) f —L- ±M2k±lL Bj:mit s>2. 
n-1 2ns~n+1

 k=0 (2k+1)s
 n=l (2n)s 

To get these results we used <j)(pn) = pn - pn~1 (p = any prime), and similar formulas to (25) and (27) may be 
found for other multiplicative functions. A more complicated result follows with f= (p in (9) or (10). 

We should note that (27) is exactly analogous to the formula 

n=1 a - 1 k=1 a - 1 
A: odd 

which was found in Greig's paper [4] by an entirely analogous procedure, and which I do not believe is immed-
iately obvious. 

Besides these applications it is clear that the general formulas we have given, (2), (8), (9), (10), may be applied 
with success to the many generalizations of the Fibonacci-Lucas sequence that have been studied. It is hoped 
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that our remarks may shed some light on the nature of the formula (1) and its analogues and why Others fail to 
exist. For example, what can be said about (22) with sine instead of hyperbolic sine? 

A final observation is that our formulas sometimes give transformed series that are very rapidly convergent. 
Thus (10) gives 

oo oo r-i 

(29) £ f(n) = £ £ ff(2k+1)2n)+^f(2rn), 
n=1 k=0 n=0 n=1 

and when we can sum the double series, we may take a very large but convenient r and expect the remaining in-
finite series to converge very rapidly. Thus, for the Fibonacci case, using Greig's formulas, we get 

„% Fn n%
 [ F2nH F4n+2 a I £ F^ 

For r = 10, 20, or 100 we could sum the first part and the remaining infinite series needs only a few terms to get 
a good approximation. I suppose this is an old trick but I am not able to cite a reference. The method must have 
been used before. 
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