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In an earlier paper by the same authors [1] properties of the compositions of an integer with 1and 2 were
discussed. This paper is a sequel to the earlier one and contains results on modes and related concepts. We stress
once again as before that the word “compositions” refers only to compositions with ones and twos unless
specially mentioned.

De’ﬁnition 1. To every composition of a positive integer ¥ we add an unending string of zeroes at both
ends. The transition --- 0+ 1+ - isa rise while ---+ 1+ 0+ - is a fall. We also defined in [1] thata one followed
by a two is rise while it is a fall if they occur in reverse order. We also define ---Q+ 1+ .-+ 1+ 2 as a rise and
w2414+ 1+0+--asafall

'n

Definition 2. A composition of a positive integer N is called “unimaximal” if there is exactly one rise
and one fall. In other words it is unimaximal if there is no 1 occurring between two 2's. (All the 2's are bunched
together.) Let M (/) denote the number of unimaximal (unimax in short) compositions of /.,

Defmtzon 3. A composition of a positive integer is called ‘uniminimal”’ if there is no 2 occurring be-
tween two 1’s. (All the 1's are bunched together.) Let m £(/) denote the number of uniminimal (unimin in
short) compositions of V.

We shall now investigate some of the properties of m1(/V) and M (/V) and make an asymptotic estimate of

mim)y/mim),
Theorem 1.
(a) min) = MmN - 1)+ (N/2]
(b) min) = miw—=2)+[n/2)
(e mi(on) = WAL+ 1)+ W2~ 1)
(d) mion) +mion — 1) = mi2n+ 1) +mi(2n - 2),

where /x/ represents the largest integer <X

Proof Let MI{/V 1) and M (/V 2) denote the number of unimax compositions ending with 1 and 2, re-
spectively. Clearly M1(V)=M2(N,7)+ M1(N,2). By Definition 2 we see that

(1) mim,1) = min -1)

since the 1 at the end of the compositions counted by M1(/V, 7) will not affect the bunching of twos. However
a2 at the end preserves unimax if and only if it is preceded by another 2 or a complete string of ones only. Thus

(2) min2z) = min-22)+1
so that decomposing (2) further we arrive at
mMien+1) =N
and
(3) mizn) =
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Putting (1) and (3) together we get

(4) MAN) = MmN~ 1)+ [N/2] .
Now using similar combinatorial arguments for m 1 with similar notation for m 1(/V, 7)and m 1(/V,2) we see
(5) m(N) = mi(n,1)+m’(n,2)
and
(6) mim,2) = m'(n -2
while

miNT) =miN-11)+1 if N=1 =0 (mod 2)
miN1) = miN-11 if N =1 (mod2)

which gives

(7 mifon) = mi(2n - 2)+N
(8) mi2n+1) = mi2N—-1)+N
or

min) = miN=2)+n/2] .
From (4) we deduce

mifon) = MA2N+ 1)+ M (2N — 1)
2

for
M2N) = M2 - 1)+ N
Mi2n+1) = M(2n) + N.
Finally (7) and {8) together imply
mi2N)+m12N = 1) = m2(2n+ 1) +m1(2N - 2)
proving Theorem 1.
Theorem 2.
lim m__1(/V} =1 .
N= migyy 2
Proof. Let A, denote the n™ triangular number

A = nin +1)
n

In general for real x let 2
) A, =Mxtl)
It is not difficult to establish using induction and Theorem 1 that
(10) mi2N +1) = Ansyg
(11) mi(an) = mi2n-1)+1
so that (10) and (11) together imply
(12) mi(N) = Anjz+0(1) .
One can also show similarly that
(13) M2V +1) = Aneq+AN-1
and
(18) miony = M2V + 1)+ MIPN = 1) _ Anvs +2AN_1 +AN-3

2 2
which give
(15) MIN) = 2AN; 2+ O(N)
for

Nl.i.[;noa AN/AN+1 =1.
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Now (12) and (15) together imply
lim my) _ 1

N 5 oo 1 2
proving Thearem 2. M=(N)

Definition 4. Every rise and a fall determines a maximum. Every fall and a rise determines a minimum.
Let M(V) and m(/V) denote the number of maximums and minimums in the compositions of V.

Theorem 3. M(N) = M(N = 1)+ M(N=2)+ Fn_y— 1
miN) = m(N—1)+m(N—=2)+Fn_o— 1
i ml) _
NI i)

Proof. As before split M(N) as
M(N) = M(N,17)+M(N,2).

11 is clear that the "1 at the end of the compositions counted by M(N, 7) does not record a max and so
MIN, 1) = M(N - 1).
Clearly the 2" at the end of the compositions counted by M(N,2) records an extra max if and only if the cor-
responding composition counted by ¥ — 2endsina 1 butnot for ¥ — 2= 7+ 7 +--- ] astring of ones. Thus
MN,2) = MIN—2)+Cpn.2(1)— 1
=MIN-2)+F,_,-1

giving
(16) M(N) = M(N — 1) +M(N-2)+Fn_p— 1.
Proceeding similarly for m(/N) we have

m(N) = m(N,1)+m(N,2) and m(N,7) = m(N—1)+Cn_1(2) =1 =m(N~1)+Fn_3— 1
while m(N,2) = m(N — 2) giving
(17) m(N) = m(N - 1)+m(N—2)+Fn_p— 1.
It is quite clear from (16) and (17) that m(N) and M(N) are Fibonacci Convolutions so that [see Hoggatt and
Alladi [2]].

. FN . Fn
N N -
1) NI gy = N g O
Now pick any composition of N/ say V. Let M(N ) and m(N¢) denote the number of max and min, respect-
ively in N, Since there is a fall between two rises and a rise between two falls we have

(19) |M(/vc)—m(/vc)l < 1.
Now from the definition of NV itis obvious that

> Ming)- m(/VCII = <3 |MN) - mNc)|
C C } C

< ON = FN+1

(20) |m(n) - m(n) | =

> (MNc)-miNg))
C

by (19). Now if we use (18) we get
. mh) _
N gy T T
In other words the number of maximums and the number of minimums are asymptotically equal.
Let us now find the asymptotic distribution of 1's and 2's in unimax compositions. Let M (V) and M,(N)
denote the number of ones and number of twos in the unimax compositions of .

Theorem 4.
Mi(2N+1) = My(2N) + M1(2N) + N2 M(2N) = M (2N — 1)+ M1(20 — 1)+ N(N - 1).
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Proof. As before, let
(21) Mj(/V) :Mj(N,7)+M1(/V,2}

Clearly we have

Mi(N,7) = My(N—=1)+MI(N=-1)
while
(22) Mi(N,2) = My(N -2 2)+(N-2)

for the compositions 7+ 7+ 7 .- 7=N—-2 and 7+ 7+..7+2=N are both unimax. Now if we decompose
(22) further we sum alternate integers. Then (21) gives the two equations of Theorem 4.

Theorem 5. My(2N +1) = Mp(2N) + N+ QV_:Z_”/_V

My(2N) = My(2N — 1)+ N+ (/V_—ZJL/V

Proof. By combinatorial arguments similar to Theorem 4 we get
Ma(N) = Ma(N, 1)+ My (N,2)
giving Mo (N, 1) = My(N — 1) and
Ma(N,2) = Ma(N—2,2)+MUN=22)+1=N/2+MN-22)+M(N-42)+
on further decomposition. We also know from (3) that

MioN+1,2) = MY(2N,2) = N
so that

’

Ma(2N + 1) = Mo(2N) + /‘V//V2+ 1)
Theorem 6.

M2(2N) = M (2N — 1)+ /Méj_ﬁ

lim M————Z(N) =1
NSw )~ 2"
Proof. Itiseasy to prove that for real x

3
= 2 X
(23) fle) = 3 W2~ %
N<«x
We know from Theorem (4) that
(24) M (2N +1) = M{(2N) +M1(2) + N?
(25) My(2N) = My(2N = 1)+ M (20 — 1)+ NN - 7).
From (4) one can deduce without trouble that
(26) MIoN+1) = N2+N+1
(27) M) = n?+ 1.

Now substituting (26) and (27) in (24) and (25) and continuing the decomposition using the recursion on
Theorem 4 we get

(28) M) = Y m2+ S miiom?) - g_(g)j + 0N?) ~ g(’zl’)j
m<N/2 m<N/2

using (23). If we adopt the same decomposition procedure to the two equations in Theorem (5) we get by virtue
of

3
(29) MytN) = 3 m2+0(/v2):1(’—") +0(N?),
3\2
m<N/2

Now (28) and (29) together imply
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m_ M) 1
Nsw Myh) 2

establishing Theorem 6,
We now state theorems analogous to (4) and {5) and (6) for the uniminimal compaositions.

Theorem 7. N-1
my(N) = my(N—2)+3 mtin1)+{N/2]

n=1
ma(N) = my(N—2)+mi(N—2)+ [N/2] .
Proof. With the usual notation m 4 (N, 7) and m ; (N,2) we find
my(N) = mq(N,7)+m (N2}
my(N12) = my(N-2)
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since the "’2" at the end of the compositions counted by m(N,2) will not affect the counting of minimums or

ones. However for m ¢ (N, 7) we find
myh,1) = myN—1,1)+miN—11+1
if V=7 =20 (mod2)
=my(N—1,1)+mi(N~1,1)
if V=7 =1 (mod?2)
so putting these together we get
N-1
my(N) = my(N-2)+3" min1)+[N/2] .

n=1
With similar use of notation form, we get
mafN) = mafN, 1)+ my(N,2)
giving
my(N;2) = ma(N—2)+mi(N—-2)
while
maflN, 1) = mafN—1,17)+7 if N—7 = 0 {mod 2)

= myllV 1) if N—17 =1 (mod2)

Il

so that these give
ma(N) = mafN —2)+m (N —2)+ [N/2] .

Theorem 8.

im maN) _ 1
N5 oo m1(/V) 2 ’
Proof. We know from Theorem 7 that
N-1
(29) myW) = my(N=2)+3" m'(n1)+[n/2] .
n=1

Now from Theorem 1 we deduce that
min1) = [n/2]

so that
N-1 N-1 N-1 A
(30) Ej m'in1) = };1 [n/2] = 2;1 [n/2] + 0N = 1) = —g-*l +0(N - 1).

If we continue to decompose m ¢ (N — 2) in (29) and use (30) we will finally get
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(31) my(N) ={AN‘1 ; AN-3 Ag—5 +} +0N2) ~ élé\l_—l . ég_.g o

2 2
We also know from Theorem 7 that
(32) my(N) = ma(N—2)+m(N—2)+[N/2]
It is easy to establish from Theorem 1 that
ml2N+1) = Anrg,  mi2N+2) = mi2n+1)+1

giving

(33) mim) = Anyj2+0(N) ~ ANy .

Now decompuosing m (N — 2) in (32) further and using (33) we get

(34) ma(N) = {ézﬁ‘—z + %‘l‘i’ ‘ } +0N?) = %{ég——-z + A_fz\’-ﬁ + } +0(N?)
S 1)BN-1 , BNs 2

since x ~ y implies A, ~ Ay. Now if we compare (34) and (31) we get
m2(/V) 1

im
N=e m/n) 2

proving Theorem 8.

[Oct.

We now shift our attention to compositions called “Zeckendorf compositions.” A composition of &/ in which
no two consecutive ones appear is called a Zeckendorf compusition (1) and if no two consecutive twos appear
itiscalled a Zeckendorf compaosition (2). We denote them in short asz; and 25 compositions respectively. Note
that in a z; composition there should be a 2 between ones while in a unimin there shou/d not similarly z 5 is

the opposite of unimax. Now denote by
Z(N) = the number of Z, compositions of /
z(N) = the number of Z; compositions of V.
Theorem 9. Z(N) = Z(N - 1)+ Z(N - 3), z(N) = z(N - 2) +z(N - 3).
im 2N _
NIl_r)nm Z) g.
Proof. As usual partition

W) = 2(N,1) = (N
clearly 2(N,2) = z(N — 2), while 2N) = (N, 1) = 2(N,2)

z(N,7) = z2(N—1,2) = z(N - 3)

‘:‘;‘;""’"s 2N) = 2(N = 2) +2(N = 3,

W?l'l Z(N) = Z(N41)+2Z(N,2) and Z(N,7) = Z(N—1)
e Z(N2) = Z(N-2,1) = Z(N - 3)

giving

ZIN) = Z(N—1)+Z(N - 3).

. ZIN+1) _
N =2

. ZIN+T)
N T(m) 8.

It can be shown that

and

where a and (3 are the dominant roots of the auxiliary polynomials x® — x?— 7=0and x> —x— 7=0(a> B

See Hoggatt and Alladi [2]. This implies that there exist constants c,, cg > 0 so that
Z(N) > Coa

and
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and
z2(V) < CﬁﬁN
giving
im 2V _
NI Z) T O
Corollary. On similar lines
2N 2
le TN NIIan T /)

NOTE. Given a partition of V/ in terms of 1 and 2, if we rearrange the summands so as to get the maximum
number of max we get aZ, composition. If we rearrange to get the maximum number of min we get aZ; com-
position. Roughly a Zeckendorf composition is either a maximax or a maximin composition.
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A TOPOLOGICAL PROOF OF A WELL KNOWN FACT
ABOUT FIBONACCI NUMBERS

ETHAN D. BOLKER
Bryn Mawr Coliege, Bryn Mawr, Pennsylvania

Theorem. Letp be aprime. Then there is a sequence {mj} of positive integers such that

Fmj =1=Fmi g = = Fmjer =0 (mod p/).

The proof depends on the following lemma.

Lemma. LetG be a topological group whose completion (in the natural uniformity) is compact. Letg< G.
Then the sequence g, g2, g>, - has a subsequence which eonverges to 1.

Proof. The sequence of powers of g has an accumulation point A =],!imm g 7 in the compact completion G
of G. Letm;=njrq —n;. Then gm]? 7in G and hence in G.
To prove the theorem we shall apply the lemma to
(1 1}
=i 4)
in the grouE G of 2x 2 integer matrices of determinant £1 topologized p-adically. That is, for every integern
write 1 =p°m, (p,m)= 1 and set Iy =p‘k, Then forA4, B <G let
d(AB) = max{| A~ By, i) = 1.2}

G equipped with the metric 4 satisfies the hypaotheses of the lemma.
It is easy to check inductively that
m o _ ( Fm+1 Fm
g = Fm Fm—l '

{Continued on p. 280.]



