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The Jacobsthal polynomials and the Fibonacci polynomials are known to be 
related to Pascal's triangle and to generalized Fibonacci numbers [1]. Now, 
we show relationships to other convolution arrays, and in particular, we con-
sider arrays formed from sequences arising from the Jacobsthal and Fibonacci 
polynomials, and convolutions of those sequences. We find infinite sequences 
of determinants as well as arrays of numerator polynomials for the generating 
functions of the columns of the arrays of Jacobsthal and Fibonacci number se-
quences, which are again related to the original Fibonacci numbers. 

1. INTRODUCTION 

The Jacobsthal polynomials Jn (x), 

(1.1) JQ(x) = 0 , Jx(x) = 1, Jn+2(x) 

and the Fibonacci polynomials Fn(x), 

(1.2) FQ(x) = 0, Fx(x) = 1, Fn+2(x) 

Jn+l(x) + xJn(x), 

xFn+l(x) + Fn(x) 9 

have both occurred in [1] as related to Pascal's triangle and convolution 
arrays for generalized Fibonacci numbers. We note that Fn(l) = Jn(1) = Fn, 
the nth Fibonacci number 1, 1, 2, 3, 5, 8, 13, ..., while Fn(2) 
Pell number 1, 2, 5, 12, 29, ... 
quences below. 

Pn , the nth 

Fn(x) 

We list the first polynomials in these se-

Jn{x) 

n = 1 
n = 2 
n = 3 
n = 4 
n = 5 
n = 6 
n = 7 
n = 8 
n = 9 

1 
X 
x2 + 1 
x3 + 2x 
xh + 3x2 

x5 + kx2 

x* + 5xk 

x7 + 6x5 

x8 + 7x6 

+ 
+ 
+ 
+ 
+ 

1 
3x 
6x2 

10;r3 

15x4 

+ 
+ 
+ 

1 
kx 

lO^c2 + 1 

1 
1 
1 + X 
1 + 2x 
1 + 3x + 
1 + kx + 
1 + 5x + 
1.+ 6x + 
1 + Ix + 

x2 

3x2 

6x2 

10x2 

15x2 

+ 
+ 
+ 

x3 

kx3 

10^ 3 + xh 

Notice that the coefficients of Jn(x) and Fn(x) appear upon diagonals of 
Pascal's triangle, written as a rectangular array: 

/ 

(1.3) 

1V,1 
» / ' / 

'7' / / / 

VI 

1 
j 

/ 3 

/ e 
10 

15 

1 
4 

10 

20 

35 

1 
5 

15 

35 

70 

The diagonals considered are formed by starting from successive elements in 
the left-most column and progressing two elements up and one element right 
throughout the array. We shall call this the 2,1-diagonal, and we shall call 

385 
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such a diagonal formed by.moving up p units and right q units the p,^-diago-
nal. 

The sums of the elements on the p,^-diagonals of Pascal's triangle are 
the numbers u(n; p - 1 , q) of Harris & Styles [4], 

We shall display sequences of convolution arrays in what follows: If 

KLo and {MI=o 
are two sequences of integers, then their convolved sequence 

is given by 

cn = a'b -o o^o' aQbx + b0al.. ?2 + albl + a2b0. 

(1.4) cn = ^a-cbn-i 

Notice that this is the Cauchy product if an, bn, cn are coefficients of in-
finite series. The convolution array for a given sequence will contain the 
successive sequences formed by convolving a sequence with itself. 

Pascal's triangle itself is the convolution array for powers of one. Look-
ing back at the display (1.3), we find that the sums of elements appearing on 
the 1,1-diagonal are 1, 2, 4, . .., 2", ....; on the 2,1-diagonal are 1, 1, 2, 
3, 5, on the 1,2-diagonal, 1, 2, 5, 13, Fon -1 while 

1 
2 
4 
8 
6 

1 
4 
12 
32 
80 

1 
6 
24 
80 
240 

1 
8 
40 
160 
560 

1 
10 
60 
280 
1120 

the coefficients of (1 + x)n appear on the 1,1-diagonal, and those of Fn(x) 
and Jn(x) appear on the 2,1-diagonal. 

The convolution array for the powers of 2 is 

(1.5) 

Notice that the sums of elements appearing on the 1,1-diagonal are powers of 
3, and that the 1,1-diagonal contains coefficients of (2 + x)n . The 2,1-di-
agonals contain the coefficients of F*+2(x) = 2xF*+l(x) + F*(x), F\(x) = 1, 
i^G^) = 2a:, and have the Pell numbers 1, 2, 5, 12, 29, ..., as sums, while 
the 1,2-diagonal sums are the sequence 1, 3, 11, 43, 171, ..., J in-\(X) * ••• • 
Noting that in the first array, Fn = Fn(l) , while in the second array the Pell 
numbers are given by Fn (2)9 it would be no surprise to find that the numbers 
Fn(3) appear as 2,1-diagonal sums in the powers of 3 convolution array. In 
fact, 

Tk£.0H.<im 1.1: When the powers of k convolution array is written in rec-
tangular form, the sums of elements appearing on the 1,1-diagonals are the 
powers of (k + 1) , while the 1,1-diagonal contains the coefficients of (k + 
x)n. The numbers given by Fn(k) appear as successive sums of the elements of 
the 2,1-diagonals, which contain the coefficients of the polynomials F*(x) 9 
where 

F%+2(x) = JucF%+1(x) + F*(x), F\{x) = 1, F%(x) kx. 
The sums of the elements appearing on the 1,2-diagonal are given by the num-
bers c72n_1(^). 
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PKOO&i Since the powers of k are generated by 1/(1 - koc) 9 the numbers 
Fn(k) by l/a-kx-x2)9 a n d ^ ^ f e ) by (1 - kx) / (l - {Ik + l)x + k2x2), the re-
sults of Theorem 1.1 follow easily from Theorem 1.2 with proper algebra. 

We need to write the generating function for the sums of elements appear-
ing on the p,^-diagonal for any convolution array. We let 1/G(x) be the gen-
erating function for a sequence ian|^_0. Then [l/G(x)]k+l is the generating 
function for the kth convolution of the sequence (an) and thus the generating 
function for the kth column of the convolution array for {an), where the left-
most column is the Oth column. 

Thzotim 7.2: Let 

1/G(x) = Ylanxn 

n - 0 

be the generating function for the sequence {an}. Then the sum of the ele-
ments appearing on the p,q-diagonals of the convolution array of {an} has 
generating function given by 

[G(x)]q~l 

[G(x)]q - xp 

VK.00^'. We write the convolution array for {an} to include the powers of 
x generated: 

a0 b0 o0 d0 

CI 1 X U •% X C i X CI1 X . . . 

a2x2 b drsX2 

GtqtA/ & qt/0 O qtX/ Ct oX . . . 

We call the top-most row the Oth row and the left-most column the Oth column. 
In order to sum the elements appearing on the p ,q-diagonal, we begin at the 
element anxn, n - 0, 1, 2, . .., and move p units up and q units right. We 
must multiply every qth column, then, successively by x , x2p , x3p , ..., so 
that the elements summed are coefficients of the same power of x. The gener-
ating functions of every <̂ th column, then, when summed, will have the succes-
sive sums of elements found along the p 9q -diagonals as coefficients of suc-
cessive powers of x9 so that the sum of the adjusted column generators becomes 
the generating function we seek. But, we notice that we have a geometric 
progression, so that 

1 | xp
 { x2p

 | m m m 1/G(x) = [G(x)]q~l 

G(X) [G(x)]q+1 [G(x)]2q+1 l-xp/[l/G(x)]q [G(x)]q-xp' 

The sums of elements appearing on the p,^-diagonals of Pascal's triangle 
and generalized Pascal triangles can be found in Hoggatt & Bicknell [2] , [3] , 
and Harris & Styles [4]. 

2. FIBONACCI AND JACOBSTHAL CONVOLUTION ARRAYS 

Returning to Pascal's triangle (1.3), since the Jacobsthal polynomials 
defined in (1.1) have the property that Jn (x) = 1 for x = 0 and n = 1, 2, 3, 
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..., Pascal's triangle could be considered the convolution triangle for the 
sequence of numbers Jn (0). Recall that the 2,1-diagonal contains the coeffi-
cients of Jn(x) as well as having sum Fn =Jn(l). We now write the convolution 
array for the sequence of numbers Jn(1), which, of course, is also the Fibo-
nacci convolution array: 

(2.1) 

Observe that the sums of elements appearing along the 2,1-diagonals are 1,1, 
3, 5, 11, 21, 43, ..., Jn(2), ... . 

If one now writes the convolution triangle for the numbers Jn(2) , 

1 
1 
2 
3 
5 
8 
. . 

1 
2 
5 
10 
20 
38 
... 

1 
3 
9 
22 
51 
111 
. • . 

1 
4 
14 
40 
105 
256 
. • . 

1 
5 
20 
65 
190 
511 
. . • 

, . 
.. 
. . 
. . 
. . 

.. 

1 
1 
3 
5 
11 
21 

1 
2 
7 
16 
41 
94 

1 
3 
12 
34 
99 
261 

1 
4 
18 
60 
195 

1 
5 
25 
95 
340 

. . 

. . 

. . 

.. 

. . 
(2.2) 

one finds that the sums of elements appearing on the 2,1-diagonals are 1, 1, 
4, 7, 19, 40, ..., Jn(3), ... . 

Finally, we summarize our results below. 

Tk2.OH.dm 2,1: When the convolution array for the sequence Jn(k) obtained 
by letting x = k9 k = 0, 1, 2. 3, ..., in the Jacobsthal polynomials Jn(x)9 
n = 1, 2, 3, ..., is written in rectangular form, the sums of the elements 
appearing along successive 2,1-diagonals are the numbers Jn(k + 1), and the 
2,1-diagonal contains the coefficients of the polynomials J*(x)9 n = 1, 2, 3, 

J*+Z(x) = JUite) + Vi + x)J*(x), J\(.x) = 1, J$(x) = 1. 

VflOO^: The Jacobsthal polynomials are generated by 

G(x) x - yx 
I>„ + i <*/>*" 

From Theorem 1.2, the sums of elements on the 2,1-diagonals have generating 
function 

G(x) (1 x he2) - x2 
X (k + l)x* 

the generating function for the numbers Jn (k + 1). 
If one now returns to the array given in (2.2), notice that we also have 

the convolution array for the Fibonacci numbers, or for the numbers Fn(l) . 
In Pascal's triangle, the 1,1-diagonal contains the coefficients of the Fibo-
nacci polynomials, but in the Fibonacci convolution array, the 1,1-diagonals 
contain the coefficients of Fn(x + 1), where Fn(x) are the Fibonacci polyno-
mials. If one replaces x by (x + 1) in the display of Fibonacci polynomials 
given in the introduction, one obtains: 
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1, x + 1, x2 + 2^ + 2, #3+3tf2+ 5# + 3, xk + bx3 + 9x2 + 10^ + 5, .... 

If we replace x by (x + 2) in successive polynomials Fn(x), we obtain: 

1, x + 2, x2 + 4x + 5, x3 + 6x2 + 14;r + 12, xh + Sx3 + 27;c2 + 44a; + 29, 

where the constant terms are Pell numbers. We next write the convolution 
array for the Pell numbers, or the numbers Fn(2) , 

(2.3) 

1 
2 
5 
12 
29 

1 
4 
14 
44 
... 

1 
6 
27 
104 
... 

1 
8 
44 
200 
... 

1 
10 
65 
340 
... . .. 

and observe that the 1,1-diagonals contain exactly those coefficients of suc-
cessive polynomials Fn(x + 2). Also, the sums of elements appearing in the 
1,1-diagonals are 1, 3, 10, 33, 109, ..., Fn(3), ..., while in the Fibonacci 
convolution array those sums were given by 1, 2, 5, 12, 29, ..., Fn(2), ..,, 
and in Pascal1s triangle those sums were the Fibonacci numbers themselves. 

We summarize as follows. 

Tk&OK&n 2,2: When the convolution array for the sequence Fn(k) obtained 
by letting x - k, k = 1, 2, 3, ..., in the Fibonacci polynomials Fn(x), n = 1, 
2, 3, .. . , is written in rectangular form, the sums of the elements appearing 
along successive 1,1-diagonals are the numbers Fn(k +1)9 and the 1,1-diagonals 
contain the coefficients of the polynomials Fn (x + k). 

Vh.00^1 The Fibonacci polynomials are generated by 

G(x) yx 
= XX + l(^n 

From Theorem 1.2, the sums of elements on the 1,1-diagonals have generating 
function 

G(x) kx 1 - (k + l)x 
the generating function for the numbers Fn(k + 1). 

Rather than using the definition of convolution sequence, one can write 
all of these arrays by using a simple additive process. For example, each 
element in Pascal1 s rectangular array is the sum of the element in the same 
row, preceding column, and the element above it in the same column. In the 
Fibonacci convolution array, each element is the sum of the element in the 
same row, preceding column, and the two elements above it in the same column. 

In the convolution array for {Fn(k)} , the rule of formation is to add the 
element in the same row, preceding solumn, to k times the element above, and 
the second element above, as 

{Fn(x)} convolution: 

X 

w 

y 
z 

x + ky + w9 k = 1, 2, 
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The convolution array for \Jn (k)} is formed by adding the element in the 
same row, preceding column, to the element above, and to k times the second 
element above the desired element, as 

{Jn (x)} convolution: 

X 

w 

y 

z 

z. = x + y + kw, k = 0, 1, 2, 

Both additive rules follow immediately from the generating function of 
the array. For example, for the {jn(k)} convolution, if Gn(x) is the gener-
ating function of the nth column, then 

Gn+1(x) = G1(x)Gn(x) = [1/(1 - x - kx2)]Gn(x), 
Gn + l(x) = Gn(x) + xGn+1(x) + kx2Gn + l(x). 

As a final example, we proceed to the Tribonacci circumstances. The Tri-
T bonacci numbers 1, 1, 2, 4, 7, 13 

(2.4) ™n + 3 = ™n + 2 + ™n + l + ^nJ 0, 2\ 1, 
appear as the sums of successive 1,1-diagonals of the trinomial triangle 
written in left-justified form. The trinomial triangle contains as its rows 
the coefficients of (1 + x + x )' 

(2.5) 
1 
3 
6 
10 

2 
7 

16 

1 
6 
19 

3 
16 

0, 1, 2, 

1 
10 

and the coefficients of the Tribonacci polynomials Tn(x) (see [5], [6]), 

1 njr3 \X) —XI n + 2 \^) *^ n+ 1 V^' -L n v»W ? 

T-xGr) = T0(x) = 0, S^Gc) = 1 

along its 1,1-diagonals. We note that Tn(1) = Tn. 
If we write instead three other polynomial sequences—tn(x), £*(#)', and 

£**(#) —which have the property that tn(l) = £*(1) = t**(l) = Tn, we find a 
remarkable relationship to the convolution array for the Tribonacci numbers. 

n = 1 
n = 2 

n = 3 

n = 4 

n = 5 

'n + 3 

1 

X 

^n+3 un+2 + #tr + £* 

xA + 1 
ic3 + 2# + 1 

^ + 3x2 + 2̂r + 1 

1 

1 

X + 1 

2^ + 2 

#2 + 3x + 3 

and 
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Vn + 3 Vn+2 + Vn + l + Xtn 

n = 1 
n = 2 

n = 3 

n = 4 

n = 5 

1 

1 

2 

a; + 3 

2x + 5 

We write the convolution array for the Tribonacci numbers: 

(2.6) 

1 
1 
2 
4 
7 
13 
24 

1 
2 
5 
12 
26 
56 
... 

1 
3 
9 
25 
63 
• . . 

1 
4 
14 
44 
. o » 

1 
5 
20 
70 
* . o . 0 e 

If we replace x with Or + 1) in £n(#),we get 15 re + 1, a:2 + 2a: + 2, a:3 + 3a:2 

+ 5a: + 4, ..., whose coefficients appear along the 1,1-diagonals. Putting 
(x + 1) in place of x in t*(x) gives 1, l,x + 2, 2x + 4, ̂ 2 + 5 x + 7 , ..., 
which coefficients are on the 2,1-diagonal, while replacing x by (x + 1) in 
£**(#) makes 1, 1, 2, a; + 43 2a: + 7, 5a: + 13, a:2 + 12a: + 24, ..., which coef-
ficients appear on the 3,1-diagonal. The coefficients of t*L(x + k) appear 
along the 1,1-diagonals of the convolution array for £*(&), and similarly for 
t*(x + k) and the array for t*(k)9 and for t**(x + k) and t%*(k). 

The Tribonacci convolution array can be generated either by the defini-
tion of convolution or by dividing out its generating functions [1/(1-a:-a: 
- x3)]n or by the following simple additive process: each element in the ar-
ray is the sum of the element in the same row but one column left and the 
three elements above it in the same column, or, schematically, 

s = p + i<; + a: + z/. 

Generalizations to generalized Pascal triangles are straightforward. 

3. ARRAYS OF NUMERATOR POLYNOMIALS DERIVED FROM FIBONACCI 
AND JACOBSTHAL CONVOLUTION ARRAYS 

In this section, we calculate the generating functions for the rows of 
the Fibonacci and Jacobsthal convolution arrays of §2. We note that, in each 
case, the first row is a row of constants; the second row contains elements 
with a constant first difference; . ..; and the ith row forms an arithmetic 

p 

w 

X 

y 

z 
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progression of order (i - 1), i = 1, 2, . .., with generating function N^(x)/ 
(1 - x)v . We shall make use of a theorem from a thesis by Kramer [8]* 

Th&Otim SI (Kramer) : If generating function 

A(x) = N(x)/(1 - x)r+l 

where N(x) is a polynomial of maximum degree r, then A(x) generates an arith-
metic progression of order r, and the constant of the progression is #(1). 

We calculate the first few row generators for the Fibonacci convolution 
array (2.1) as 

1 1 2 - x 3 - 2x 5 - 5x + x2 8 - 10a; + 3x2 

(1 - x)5 ' (1 - x)6 1 

ay 

1 
1 
2 
3 
5 
8 
13 
21 

- x9
 (1 - x)2' (1 -

the coefficients of 

-1 
-2 
-5 
-10 
-20 
-38 

1 
3 
9 
22 

-1 
-4 

* ) 3 ' 
the 

(1 --ar)"' 
successive 

(3.1) 

The rising diagonal sums are 1, 1, 2, 2, 3, 3, 4, 4, ..., but if we use ab-
solute values, they become the Tribonacci numbers 1, 1, 2, 4, 7, 13, 24, 44, 
.... The row sums are all 1, which means, by Theorem 57, that Nn(l) = 1, or 
that the constant of the arithmetic progression of order (n - 1) found in the 
nth row of the Fibonacci convolution array is 1. However, the row sums, us-
ing absolute values, are 1, 1, 3, 5, 11, 21, 43, 85, . . . , Jn(2) , ... . Notice 
that successive columns are formed from successive columns of the Fibonacci 
convolution array (2.1) itself. We defer proof to the general case. 

If one now turns to the convolution array (2.2) for {jn (2)} , the first 
few row generators are 

1 1 3 - 2# 5 - 4a; 11 - Ux + kx2 

1 x (1 - x)2 (1 - x)s (1 - x)* (1 - x)5 

Displaying the coefficients of the numerator polynomials, 

(3.2) 

1 
1 
3 
5 
11 
21 
43 

-2 
-4 
-14 
-32 
-82 

4 
12 
48 

we find that the rising diagonal sums are 1, 1, 3, 3, 7, 7, 15, 15, ..., 
while, taking absolute values, they are 1, 1, 3, 7, 15, 35, 79, ..., where 
the kth term is formed from the sum of the preceding term and twice the sum 
of the two terms preceding that, a generalized Tribonacci sequence. Each row 
sum is again 1. However, using absolute value, the row sums become 1, 1, 5, 
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9, 29, 65, 181, . .., c/n(4), .... Notice that successive columns are multi-
ples of successive columns of (2.2), the second column being twice the second 
column of (2.2), the third column four times the original third column, and 
the fourth column eight times the original fourth column. 

Notice that the Fibonacci numbers are also the numbers Jn (1) . We state 
and prove a theorem for the general Jacobsthal case. 

Th&Ofim 3.7: Let J°n
 + l (k) denote the nth element of the jth convolution 

of {jn(X))' Let Nm(x) / (1 - x)m denote the generating function of the mth row, 
m = 1, 2, ..., in the convolution array for {Jn (k)}. Then 

[(m-l)/2] 

P/LOOfi: [Note that J„(k) = Jn (k) . ] From the rule of fo rmation of the 
convolution array for {Jn(k)) derived in §2, the row generators Dn(x) obey 

(3.3) Dn(x) = xDn(x) + ̂ . j W + kDn_2(x) = ]_ JDn_1(x) + kDn_2(x)] 

NAx) N Xx) kN (x) 

(1 - x)n~l (1 - x)n~2 
(1 - x)n x 

(3.4) Nn(x) = N^^x) + (1 - x)kNn_2(x) = Nn_1(x) + kNn_2(x) - kxNn_2(x) . 

Comparing (3.4) to the original recurrence for Jn(k) and noting that N1(x) = 
N2(x) = J1(k) = J2(k) = 1, the constant term is given by Nn(0) = Jn{k). The 
rule of formation of the convolution array can also be stated as 

(3.5) J^HX) = Ji+_\(k) + kJi+_l
2(k) + ^ m . 

Let un be the coeff icient of x in Nn(x). Then 

Un = "„_ ! + kun_2 ~ kJn_2(k). 
If UA = -k.J2-2(k), 3 = 3 , 4, . . . , n - 1, then 

un = -kJ2
n_3(k) - k2J2

n_h(k) - kJn_2(k) 

= ~k(J2_3(k) + kJ2
n_hiX) + Jn_2(k)) = -kJ2

n_2{k) 

by (3.5). Thus, the coefficient of x has the desired form for all n >_3. 
Next, let un be the coefficient of xl and Vn the coefficient of xv~ in 

Nn(x). If ud = (-l)V*!|f(k)fcf and Vj = (-1) *"1fef-1j/_2i (fc) for j = 3, 4, 
..., n - 1, then 

Wn = "„-l + k"n-2 - kVn-2 

= <-i)V(4-i-2i(fc> + kji+_l-2i(k) + jUiVO) 
= ( - D V C J ^ O O ) 

by again applying (3.5), establishing Theorem 3.1, except for the number of 
terms summed. By Theorem 57 [8] , i <_ m, since the degree of Nm(x) is less 
than or equal to m. But J^tli (̂ ) = °  f o r [(rn - 1)/2] < i <_ m. 
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By Theorem 3.1, the generating function for the ith column of the numera-
tor polynomial coefficient array for the generating functions of the rows of 
the convolution array of \JnOO) is now known to be 

( i - x - kx2y 
Summing the geometric series 

1 + kx2
 + k2xh

 + mmmSS 1 
1 - x - kx2 (1 - x - kx2) 2 (1 - x - kx2)3 1 - x - (2k)x2 

which proves that the rows1 sums, using absolute values, are given by Jn(2k). 
However, summing for the rows as originally given, we use alternating signs 
in forming the geometric series, and its sum becomes l/(l-#), so that Nm(l) 
= 1. That is, the ith row is an arithmetic progression of order (i - 1) with 
constant 1 in every one of the arrays for {Jn(k)}, k - 1, 2, 3, .... 

Turning to the cases of convolution arrays for the sequences {Fn(k)}, k = 
1, 2, 3, ..., we look at Fn(2) as in array (2.3). The first few row genera-
tors are 

1 2 5 - x 12 - kx 29 - \kx + x2 70 - kkx + 6x2 

1 " x* (1 - x)9-9 (1 - ^ ) 3 ' (1 - x)k' (1 - x)5 ' (1 - x)6 

The array of coefficients for the numerator polynomials is 

1 
2 
5 -1 

(3.6) 12 -4 
29 -14 1 
70 -44 6 

The row sums are 1, 2, 4, 8, 16, 32, . .., 2n, . .., and the coefficients of 
successive columns appear in the original array (2.3). We state the situa-
tion for the general case. 

Tke.0A.2m 3.2: Let F^+1(k) denote the nth element in the jth convolution 
of the numbers {Fn(k)} , k = 1, 2, 3, ...,n= 1, 2, 3, ... . Let the generat-
ing function of the 777th row in the convolution array for {Fn(k)} be N*(x)/ 
(1 - x)m, m = 1, 2, ... . Then 

[(/n-l)/2] 

The proof is analogous to that of Theorem 3.1 and is omitted in the in-
terest of brevity. 

Theorem 3.2 tells us that the -ith. column of the numerator coefficient 
array form the generating functions of the rows of the convolution arrays for 
Fn(k) is given by (-1)1 x2z /(1 - kx - x2)z . Then, N*(l) is the sum of the rows 
given by the sum of the geometric series 
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so that N*(l) = kn~ By Theorem 57 [8], the (i-l)st order arithmetic pro-
gression formed in the ith row of the convolution array for {Fn(k)} has con-
stant kn~l, in every one of the arrays, ̂  = 1, 2, 3, .... 

4. ARRAYS OF SUCCESSIVE JACOBSTHAL AND 
FIBONACCI POLYNOMIAL SEQUENCES 

In [7], Whitford considers an array whose rows are given by successive 
sequences derived from the Jacobsthal polynomials, such as 

k | The sequence {jn(k)} 

(4.1) 

0 
1 
2 
3 
4 

1 
1 
1 
1 
1 

1 
1 
1 
1 
1 

1 
2 
3 
4 
5 

1 
3 
5 
7 
9 

1 
5 

11 
19 
29 

1 
8 

21 
40 
65 

1 1 1 1 
13 21 34 55 
43 85 171 341 
97 217 508 1159 
181 441 1165 2929 

The successive elements in each column are given byl, 1, k + 1, 2?c + 1, 
k + 3k + l9 . . . , by the recursion relation for {Jn (k)}. The vertical sequences 
above are given by 

(4.2) ^ ) = E ( w - r > ' = r ^ r E ( ^ + i ) ^ 1 ) / 2 

where n is fixed, n >_ 1, and k = 0, 1, 
i 

r odd 
2 3, (see [7]). 

We now wish to obtain the generating functions for the columns of the ar-
ray (4.1). Notice that the first two columns are constants, the next two 
columns have a constant second difference, the next two have a constant third 
difference, etc. This means that if Dn(x) is the generating function for the 
nth column, n - 1, 2, 3, . . 
each given by (1 - x)m . We 
quoted in §3. 

One has 

then the denominators of D2m_1(x) and D2m(x) are 

D 2m -1 (X) 

shall again make use of Theorem 57 [8], which was 

(x) 

(1 - x) 
V?m (X) 

r2m(x) 

- x) 
by virtue of 

1 - x kxz i>*+i<fc>*n-
Now, if Jn+l(k) has fixed (n + 1) and k varies, we generate the columns. If 
we fix k and let n vary, we generate the rows. Jn+1(k) is a polynomial in k 
with coefficients lying along the 2,1-diagonal of Pascal!s triangle. To get 
the ordinary generating function, we can note that 

Ak(x) 

(1 - x) k + l £ nkx? 

where the Ak(x) are the Eulerian polynomials. (See Riordan [9] and Carlitz 
[10]). Thus, we note that the polynomials J"2m-i(?c) and J2m (k) are both of 
the same degree, and we will expect the generating functions to reflect this 
fact. 



396 CONVOLUTION ARRAYS FOR JACOBSTHAL AND FIBONACCI POLYNOMIALS [Oct. 

From careful scrutiny of the array generation, we see 

(4.3) Dn + 2(x) = Dn+l(x) + xV'n(x). 

One then breaks this down into two cases: 

(4.4) 

Xx) 

,(*) 

' 2m + 2(*> 

(1 
r 

m + l x) 

2m + 3 ^ ) 

r2m + lM 

a - xy 
P 2 . + 2 ^ ) 

+ X 

(1 - x) m+2 a - x) m + l 
+ X 

dx 

_d_ 
dx 

v (x) 
2m 

- x)' 

2 m + l ^ 

(1 - x) m + l 

This leads to two simple recurrences: 

(4.5) 
,(*) 

r2m + i ( ^ + x(l - x)v^m{x) + mxr2m(x) 

r2m + s ^ = d - x)r2m+2(x) + x(m + l)r2m + 1(x) + x(l 

The first fifteen polynomials rn(x) are: 

n vn (x) 

X'r2m+1(X' 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

1 
1 
1 
1 + 
1 + 
1 + 
1 + 

x 
2x -
5x 
9x- 3xz 

7x2 1 + 17a; + 
1 + 29a: + llx2 -
1 + 50a; + 76a:2-

17a:d 

6x3 

1 + 83a: + 164a;2 - lOOor 
l + 138o; + 516a;2 + llOoT 

x 
29a:4+ 
45a;4 

50a:3 - 571a;1* 
421a:4 

l + 226a: + 1121a:z 

1 + 370a: + 2843a;2 + 2344a:3 

1 + 602a: + 6071a:2 + 4956a;3 - 5249a:4 - 1430a:5 + 89a:6 

8a;5 + 
98a;5 + 

row sums 

MD 
0! 
1! 
1! 
2! 
2! 
3! 
3! 
4! 
4! 
5! 
5! 
6! 
6! 
7! 
7! 

We observe that vn(1) = [n/2]\, where [x] is the greatest integer contained 
in x. This follows immediately by taking x = 1 in (4.5) to make a proof by 
mathematical induction. By Theorem 57 [8], rn(l) also is the constant of the 
arithmetic progression formed by the elements in the nth column of the Jacobs-
thai polynomial array (4.1). There is a pleasant surprise in the second col-
umn of the numerator polynomials rn(x), whose generating function is 

1/[(1 - x - x2)(l - x)(l - x2)]. 

The sequence of coefficients is 0, 0, 0, 
370, 602, ...3 
relation that 

(4.6) 
*2k • 2k -1 

r = 1, 2, 3, 

- k 

1, 2, 5, 9,17,29,50,83, 138, 226, 
We can prove from the recurrence 

k 

as v is odd or even. By returning to (4.5), we can write a recurrence for 
the ur simply by looking for those terms which contain multiples of x only, 
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so that 

U2m+2 " U2m+1 + U2m + m 

U2m + 3 = ^ 2 , + 2 - 1 ) + ( ^ + 1 ) + U2m + 1 = U ^ ^ + U ^ ^ + 777 

Since we know that (4.6) holds for r = 1, 2, ...,15, we examine w2 m + 2
 a n d 

u2m-\-3> assuming that (4.6) holds for all v < 2m + 2. Then 

u (F2m + 1 - (m + 1)) + (F2m -m) +m- F2m+2 - (m + 1) 

u0 (^+2 " & + D ) + (F2m + 1 - (m + 1)) + m = F2m + 3 - (777 + 2) , ^ + 3 " V- 2m+2 v " r " ^ ^ V x 2/7J + 1 V " ̂  -̂ -/ T '" " r2m + 3 

so that (4.6) holds for all integers v by mathematical induction. 
To determine the relationship between elements appearing in the third 

column of the numerator polynomial array, examine (4.5) to write only those 
terms which contain multiples of x2. Letting the coefficient of x in ii

n{x) 
be vn9 we obtain 

V2m+2 = V2m+1 + 2v2m + (777 - V)U2m 

V2m + 3 = V2m+2 + ^V2m + l + mU2m+l ~ U 2 m + 2 

which, when combined with (4.6), gives us 

(4.7) 

U 2 m + 2 = y
2 m + l + 2 U

2 m 

= V2m+1 + 2 ^ 2 m 

U2m + 3 = U 2 m + 2 + 2V2m+l ~ u->~ ^ + ^ o m J . i " 2 t „ 

W 2 m 

(77? • 

- W 

+ mF2m ~ 

~ D ^ 2 m " 

2 m + 2 + mF: 

2 
77? 

- 777) 

2 7 7 7 + 1 

= ^ 2 m + 2 + 2V2m + 1 + (777 + l ) F 2 m + 1 - F2m + 3 - (777 + 1 ) 

where tm = 777(777 + l)/2, the rnth triangular number. 
Continuing to the fourth column, if the coefficient of x3 in vn (x) is wn, 

we can. write 

^2m+2 = U2m + 1 + 3W2m + (777 - 2 ) y 2 m 

W2m+3 = W2TT?+2 + 3 ^ 2 m + l + (777 - l)7J>2m + l " v2m + 2> 

and so on. 
Now, if we wish to generate the columns of the numerator polynomials ar-

ray, it is easy enough to write the generators for the second column if we 
take two cases. To write the generating function for 1, 5, 17, 50, 138, ..., 
u2n, ..., since this is the sequence of second partial sums of the alternate 
Fibonacci numbers 1, 3, 8, 21, 55, ..., the generating function is 

1/[(1 - 3x - x2)(l - x)2, 
except to use it properly, we must replace x by x2, so that 

~~ / _A ^ 2 n + W^ 

(1 - 3x2 + x^il - x2)2 „=o 

Now, the generating function for u2k_1 results from combining the known gen-
erators for F2k_1 and for the positive integers. 

Since 

^ " — 1 + 2x + 5x2 + 13^3 + 3 4 ^ + • • • 
3x + x2 
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and 

1 + 2x + 3x2 + hx3 + 
(1 - x)" 

1 - x 

1 - 3x + x2 (1 - x)' (1 - 3x + x2)(l - xY £(*,2n-l-*>*n~1-

To adjust the powers of x9 first replace x by x and then multiply each side 
by x, obtaining finally 

2x~ 
(1 - 3x2 + xh){l - x2Y 

E^n-l ri)x In • ' - E Un ,X In - 1 
In -1 

On the other hand, if one writes the array whose rows are given by suc-
cessive sequences derived from the Fibonacci polynomials, 

(4.8) 

The sequence {Fn(k)} 

1 
2 
3 
4 

2 
5 
10 
17 

3 
12 
33 
72 

5 
29 
109 
305 

8 
70 
360 
1292 

13 
169 
1189 
5273 

21 
308 
3927 
22384 

The 
The successive elements in each column are given by 1, k, k2 + 1, k3 + 2k, 
kh + 3k3 + 1, . . . , by the recursion relation for Fn(k) , k = l , 2, 3, . . 
vertical sequences above are given by 

n -1 

(4.9) Fn(k)=E(K_rr)fen"2r"1 

where n is fixed, n >_ 1, and k = 1, 2, 3, , or by 

S ^ + iOÔ , 

which generates the rows for k fixed, n = 1, 2, 3, ..., and the columns for n 
fixed, k = 1, 2, 3,.... 

As before, we wish to generate the columns. We observe, since the nth 
column has a constant (n-l)st difference, that the denominators of the col-
umn generators will be (1 -x)n, n = 1, 2, 3, ... . 

If we let D*(x) be the generating function for the nth column, and let 

(4.10) D*(x) 
r*(x) 

(1 - a;)" 

this time we find that 

B*+Z(x) = xDZl^x) + D*(x); 

(4.11) r*+2(x) = x(n + l)p*+1Gr) + x(l - x)r^ll(x) + (1 - x)2r*(x), 

We list the first few numerator polynomials r*(x): 
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1 
2 
3 
4 
5 
6 
7 

1 

1 -

1 + 

1 + 

X 
x + 

3x + 

8x + 
6x + 

2x2 

Ux2 + 
22x2 + 
99a;2 + 

3a;3 

4a;3 + 
60a;3+ 

244a;3 + 

5xh 

22a;4+ 
2 7 9 ^ + 

8a;5 

78a:5 + 

r*(x) p*(l) 

0! 
1! 
2! 
3! 
4! 
5! 

13a;6 6! 
8 21a: + 240a;2 + 1251a:3 + 20 1 6 ^ + 1251a;5 + 240a;6 + 21a:7 7! 
9 1 + 25x + 715a;2 + 5245a;3 + 142090^ + 14083a:5 + 5329a;6 + 679a?7 + 34a;8 8! 

We find that r*(l) = (n - 1 ) ! , and that the coefficient of the highest power 
of x in r*(x) is Fn, It would also appear that the coefficients of x are al-
ternate Fibonacci numbers in even-numbered rows. In fact, D. Garlick [11] 
observed that, if un is the coefficient of the linear term in r*(x) 9 then 

u2k-i = Fik-i - (2& - 1 ) , 

which can be proved from the recurrence relation by induction. 
Let on be the constant term in r*(x) . By studying (4.11) carefully to 

find first, constant terms only, and then just the linear terms, we can write 

(4.13) 
uv 

(n + l)en + 1 + un+1 + un - 2cr "n + 2 
Since o1 = 1 and c2 = 0 , c2k + 1 = 1 and o2k = 0 . Assume t h a t (4 .12) i s t r u e 
for a l l n <. 2k. Then, t a k i n g n = 2k - 1 i n (4 .13) , 

u2k+l = (^°2k + U2k + u2k-l ~ 2o2k-l 

= 0 + F2k + F2k^ - (2k - 1) - 2 = F 2 k + 1 - (2fc + 1 ) . 

Similarly, from (4.13) for n = 2fc, 

W 2 k + 2 = < 2 f c + 1 > C 2 / c + l + M2fc+1 + U2k ~ 2°2k 

= (2k + 1) + F2fe+1 - (2/c + 1) + F2k - 0 = F2fc+2, 

so that (4.12) holds for all integers k > 0. 
Continuing, let vn be the coefficient of x2 in r*(x). By looking only at 

coefficients of x2 in (4.11), we have 

vn+2 = (n + l)un+1 + 2vn + 1 - un+1 + vn - 2un + on 

= 2vn+1 + vn + nun+1 - 2un + on9 

which, combined with (4.12), makes 

»2h+2 = 2V2k + 1 + V2k + 2k(F2k + 1 - (2k + 1 ) ) - 2F2k 

u 2 k + 1 = 2v2k + Vzk_x + (2k - l)F2k - 2(F2k_1 - (2k - 1 ) ) + 1 . 

Now, to p rove t h a t t he c o e f f i c i e n t of t h e h i g h e s t power of x i s Fn, we 
l e t t he c o e f f i c i e n t of t h e h i g h e s t power of x i n v*(x) be hn» As b e f o r e , 
(4 .11) g ive s us 

hn+2 = (n + l)hn+1 -• nhn+l + hn = hn+l + hn. 
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Since hl = 1 and h2 = 1, hn = Fn . 
Further, it was conjectured by Hoggatt and proved by Carlitz [12] that 

l>\n(x) is a symmetric polynomial. Note that this also gives the linear term 
of v\n (x) the value F2n since we have just proved that the highest power of x 
has Fn for a coefficient. 

5. INFINITE SEQUENCES OF DETERMINANT VALUES 

In [13] and [14], sequences of m x m determinants whose values are bino-
mial coefficients were found when Pascal's triangle was imbedded in a matrix. 
Here, we write infinite sequences of determinant values of m x m determinants 
found within the rectangular arrays displayed throughout this paper. We will 
apply 

EveV TklOSizm: Consider a determinant of order n whose ith row (column) 
(-£ = 1, 2, . . . , ri) is composed of any n successive terms of an arithmetic 
progression of order (i - 1) with constant a^. Then the value of the deter-
minant is the product aYa0 ... an. 

Consider the convolution array for the powers of 2 as given in (1.5). 
Each row is an arithmetic progression of order (i - 1) and with constant 
2% , i = 1, 2, 3,.... Thus, the determinant of any square m x m array 
taken to include elements from the first row of (1.5) is 2° 2122 ... 2m~l = 
2 m ' m " 1 ) / 2 . Further, noticing that each element in the array is 2 t _ 1 times 
the element of Pascal's triangle in the corresponding position in the -£th 
row, i = 1, 2, ..., we can apply the theorems known about Pascal's triangle 
from [13] and [14]. However, if we form the convolution triangle for powers 
of k, then each element in the ith row is kz~l times the corresponding ele-
ment in the ith row of Pascal's triangle written in rectangular form, i, - 1, 
2, ... . Thus, applying the known theorems for Pascal's triangle, we could 
immediately evaluate determinants correspondingly placed in the powers of k 
convolution triangle. 

Also, we notice that the convolution array for the sequence {e/n(fc)}n = 0> 
k = 0, 1, 2, 3, ..., has its rows in arithmetic progressions of order (i - 1) 
with constant 1, i - 1, 2, ..., while the convolution array for the sequence 
{Fn(k)}n=0, k = 1, 2, 3, ..., has its rows in arithmetic progressions of or-
der (i - 1) with constant fc^-1, i = 1, 2, ... . From these remarks, we have 
the theorem given below. 

Th.10K.Qjn 5.1: Form the m x m matrix A such that it contains 777 consecutive 
rows of the original array, with its first row the first row of the original 
array, and m consecutive columns of the original array with its first column 
the jth column of the original array. In the convolution array for the se-
quence {jn(^)}n=o> & = 0, 1, 2, ..., det A = 1. In the convolution array for 
the sequence {Fn (k)}n = 0 , k = 1, 2, 3, . . . , or in the convolution array for the 
powers of k9 det A = fc^"1)/2. 

Determinants whose values are binomial coefficients also appear within 
these arrays. To apply the results of [13] and [14], we must first express 
our convolution arrays in terms of products of infinite matrices. Let the 
rectangular convolution array for \Fn(k)} be imbedded in an infinite matrix 
gr , and similarly, let J, be the infinite matrix formed from the convolution 
array for (c7n(/c)}. Let P be the infinite matrix formed by Pascal's triangle 
written in rectangular form. Consider the convolution array for the powers 
of k9 written in rectangular form. Each successive 1,1-diagonal contains the 
coefficients of (x + k)n,, Form the matrix A\ such that the coefficients of 
(k+n)n appear in its columns on and beneath the main diagonal, and the matrix 
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in exactly the same way, except use the coefficients of (1 + kx)n . Then, 
^T, and ByP We illustrate, using 5 x 5 matrices, for k = 2: 

1 
0 
0 
0 
0 

0 
2 
1 
0 
0 

0 
0 
4 
4 
1 

0 
0 
0 
8 
12 

0 ... 
0 ... 
0 ... 
0 
16 ... 

1 
1 
1 
1 
1 

1 
2 
3 
4 
5 

1 
3 
6 
10 
15 

1 
4 
10 
20 
35 

1 
5 ... 
15 ... 
35 ... 
70 ... 

1 
2 
5 
12 
29 

1 
4 
14 
44 
121 

1 
6 
27 
104 
366 

1 
8 
44 
200 
810 

1 ... 
10 ... 
65 ... 
340 ... 
1555 ... 

oP = 

1 
0 
0 
0 
0 

0 
1 
2 
0 
0 

0 
0 
1 
4 
4 

0 
0 
0 
1 
6 

0 ... 
0 ... 
0 ... 
0 ... 
1 ... 

1 
1 
3 
5 
11 

1 
2 
7 
16 
41 

1 
3 
12 
34 
99 

1 
4 
18 
60 
195 

1 ... 
5 ... 
25 
95 ... 
340 ... 

= S2 

Using the methods of [13] and [14], since the generating function for the 
jth column of Ak is [x(k 4- x) ]J ~1 while the jth column of P is 1/(1 -x)J\ the 
j'th column of AkP is 1/ [1 - x(k +x) ] J = [1 - kx - x2]J

9 where we recognize the 
generating functions for the columns of the convolution array for {Fn(k)} 9 so 
that AkP = 9^. Similarly, since the jth column of Bk is generated by [x(l + 
for)]*7'-1, BkP i s gene ra t ed by 1 / [1 - x(l + kx)]J'~1= 1 / [1 - x - kx]J'~1,so t h a t 
BkP = Jk . 

Each submatrix of Jk taken with its first row anywhere along the first 
row or second row of Jk is the product of a similarly placed submatrix of P 
and a matrix with unit determinant. The case for 9^ is similar, except that 
an 77? x m submatrix of P is multiplied by an m x m matrix whose determinant 
is 
P 

km^ 
[13] 

Since we know 
we write 

how to evaluate determinants of submatrices of • i ) / 2 

. [14]. 

Tk2.0H.Qjn 5,2: Form an m x m matrix B from 777 consecutive rows and columns 
of the original array by starting its first row along the second row of the 
original array and its first column along the jth column of the original ar-
ray. In the convolution array for the sequence {Jn(k)} ^_0, k = 0, 1, 2,..,, 

det B = ( J . In the convolution array for the sequence {Fn(k)}°^=0, 

k = 1, 2, 3, . . . , or in the convolution array for the powers of k, det B = 
km(m-l)/z( j ~ l + m \ 

We could extend the results of Theorem 5.1 to apply to any convolution 
array for a sequence with first term 1 and second term k9 since Hoggatt and 
Bergum [15] have shown that such convolution arrays always have the ith row 
an arithmetic progression of order (i - 1) with constant k. It is conjectured 
that Theorem 5.2 also holds for the convolution array of any increasing se-
quence whose first term is 1 and second term is k. 
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Proceeding to the array formed from the Jacobsthal sequences themselves, 
as given in (4.1), the nth column is an arithmetic progression of order 
[(n - l)/2], where [x] is the greatest integer contained in x. That makes 
determinants of value zero very easy to find. Any determinant formed with 
its first column the first, second, or third column of the original array 
containing any m consecutive rows of m consecutive columns, m > 3, is zero. 
Det A = det B = 0 whenever m > j, for matrices A and B formed as in Theorems 
5.1 and 5.2. However, determinants formed from 77? consecutive rows taken from 
alternate columns have value (0!)(1!)(2!) ... (m - 1)! or (1!)(2!) ... (ml) 
depending upon whether one takes the first column and then successive odd 
columns or begins with the second column and then successive even columns. 

Similarly, the array (4.8) formed of the sequences {Fn(k)}°^=0, k = 1, 2, 
3, ..., has its ith column an arithmetic progression of order (i - 1) with 
constant (i - 1)!, so that any determinant formed from any m consecutive rows 
of the first m columns has determinant (0!)(1!) ... (m - 1)!. 

REFERENCES 

1. Verner E. Hoggatt, Jr., & Marjorie Bicknell, "Convolution Triangles," The 
Fibonacci Quarterly, Vol. 10, No. 6 (Dec. 1972), pp. 599-608. 

2. V. E. Hoggatt, Jr., & Marjorie Bicknell, "Diagonal Sums of Generalized 
Pascal Triangles," The Fibonacci Quarterly, Vol. 7, No. 4 (Nov. 1969), 
pp. 341-358. 

3. V. E. Hoggatt, Jr., & Marjorie Bicknell, "Diagonal Sums of the Trinomial 
Triangle," The Fibonacci Quarterly, Vol. 12, No. 1 (Feb. 1974), pp. 47-
50. 

4. V. C. Harris & Carolyn C. Styles, "A Generalization of Fibonacci Numbers," 
The Fibonacci Quarterly, Vol. 2, No. 4 (Dec. 1964), pp. 277-289. 

5. V. E. Hoggatt, Jr., & Marjorie Bicknell, "Generalized Fibonacci Polyno-
mials," The Fibonacci Quarterly, Vol. 11, No. 5 (Dec. 1973), pp. 457-465. 

6. Verner E. Hoggatt, Jr., & Marjorie Bicknell, "Generalized Fibonacci Poly-
nomials and Zeckendorffs Theorem," The Fibonacci Quarterly, Vol. 11, No. 4 
(Nov. 1973), pp. 399-419. 

7. A. K. Whitford, "Binet's Formula Generalized," The Fibonacci Quarterly, 
Vol. 15, No. 1 (Feb. 1977), p. 21. 

8. Judy Kramer, "Properties of Pascal's Triangle and Generalized Arrays," 
Master's Thesis, San Jose State University, January 1973. 

9. John Riordan, Introduction to Combinatorial Analysis (New York: John 
Wiley & Sons, Inc., 1958), p. 38. 

10. L. Carlitz & Richard Scoville, "Eulerian Numbers and Operators," The Fi-
bonacci Quarterly, Vol. 13, No. 1 (Feb. 1975), pp. 71-83. 

11. Denise Garlick, private communication. 
12. L. Carlitz, private communication. 
13. Marjorie Bicknell & V. E. Hoggatt, Jr., "Unit Determinants in Generalized 

Pascal Triangles," The Fibonacci Quarterly, Vol. 11, No. 2 (April 1973), 
pp. 131-144. 

14. V. E. Hoggatt, Jr., & Marjorie Bicknell, "Special Determinants Found With-
in Generalized Pascal Triangles," The Fibonacci Quarterly, Vol. 11, No. 5 
(Dec. 1973), pp. 469-479. 

15. V. E. Hoggatt, Jr., & G. E. Bergum, "Generalized Convolution Arrays," The 
Fibonacci Quarterly, Vol. 13, No. 3 (Oct. 1975), pp. 193-197. 

4Hftttt# 


