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1. INTRODUCTION

In a previous paper [2], we considered the problem of determining all
positive integers which possess kth-power numerical centers, and proved that
there are infinitely many positive integers possessing first-power numerical
centers and that the only positive integer possessing a second-power numeri-
cal center is 1. In the present paper, we treat the cases kK = 3, 4, and 5.

2. THE CASE k =

Let us begin by recalling the following

Definition: Given the positive integer n, we call the positive integer
N, (N < n), a kth-power numerical center for #» in case the sum of the kth
powers of the integers from 1 to N equals the sum of the kth powers from
N to n.

In this section, we prove the following

Theorem 1: The only positive integer possessing a third-power numerical
center is 1.

Proof: Let N be any third-power numerical center for the positive inte-
ger n. Since the sum of the cubes of the first NV positive integers is given

by 2 2
:E:l _ N + 1)
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the condition that N be a third-power numerical center for n requires that
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On setting X = 20% + 1, we obtain
1) ¥ -2nP(n+ 1)% =1

Let us now consider the following

Problem: To find all triangular numbers whose square is also triangular.
This requires

2
2) (n(n2+ 1)> _ 1v(1v2+ 1)

and, on setting X = 2n + 1, we again obtain equation (1). But equation (2)
was solved by Ljunggren [3] and Cassels [1], who showed that its only positive
integer solutions are (n, N) = (1, 1) and (3, 8). Thus, the only positive
integer solutions of (1) with X odd are (x, n) = (3, 1) and (17, 3).

From this, it follows that the only positive integer solution of (1)
satisfying X = 2n2 + 1 is (X, n) = (3, 1), and our result is proved.
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3. THE CASES k = 4 AND 5

Since

N
2.4 _ N + 1) (6N + 9V + N - 1)
vo= 30 ,

i=1
the condition that N be a fourth-power numerical center for »n requires
N+ 1) (6N + 9N + W - 1)
=n(m+ 1)(6n> + 9n*> +n - 1) - N - 1)(6N° - 9N* + N + 1),
and on setting X = 2n + i, Y = 2N, we obtain
(3) 3x° - 10X® + 7X = 6Y° + 40Y°® - 16Y
subject to the conditions

(4) X positive and odd, Y positive and even.

Further, since

N
Z.s _NEW P+ 2N + 1) (2N + 2N - 1)
vo= 12

=1

the condition that N be a fifth-power numerical center for »n requires

N2(N? + 2N + 1) (2N% + 2N - 1)
=n2m?+ 2m+ 1)2n?% + 2n - 1) - N2(W? - 2V + 1) (2N% - 2N - 1),

and, on setting
X=(@n+ 12, v= (@202
it reduces to
(5) x® - 5x% + 7X - 3 = 2Y° + 20Y% - 16Y
subject to the conditions

(6) X a positive odd square, Y a positive even square.

Unfortunately, we have been unable to discover a method of solving equa-
tions (3) and (5) completely, although we have used a computer to verify that
the only integer solution of (3), subject to (4), with X < 205 is (X, Y) =
(3, 2) and that the only integer solution of (5), subject to (6), with X < 411
is (X, Y) = (9, 4).
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