ON ODD PERFECT NUMBERS

G. L. COHEN

The New South Wales Institute of Technology, Sydney, Australia
If $\sigma(n)$ denotes the sum of the positive divisors of a natural number n, and $\sigma(n)=2 n$, then n is said to be perfect. Elementary textbooks give a necessary and sufficient condition for an even number to be perfect, and to date 24 such numbers, $6,28,496, \ldots$, have been found. (The 24 th is

$$
2^{19936}\left(2^{19937}-1\right),
$$

discovered by Bryant Tuckerman in 1971 and reported in the Guiness Book of Records [3]. The three preceding ones were given by Gillies [2].)

It is not known whether there are any odd perfect numbers, though many necessary conditions for their existence have been established. The most interesting of recent conditions are that such a number must have at least eight distinct prime factors (Hagis [4]) and must exceed 100^{200} (Buxton and Elmore [1]).

Suppose p_{1}, \ldots, p_{t} are the distinct prime factors of an odd perfect number. In this note we will give a new and simple proof that

$$
\begin{equation*}
\sum_{i=1}^{t} \frac{1}{p_{i}}<\log 2 \tag{1}
\end{equation*}
$$

a result due to Suryanarayana [5], who also gave upper and lower bounds for

$$
\sum_{i=1}^{t} \frac{1}{p_{i}}
$$

when either or both of 3 and 5 are included in $\left\{p_{1}, \ldots, p_{t}\right\}$.
Most of these bounds were improved in a subsequent paper with Hagis [6], but no improvement was given for the upper bound in the case when both 3 and 5 are factors. We will prove here that in that case

$$
\sum_{i=1}^{t} \frac{1}{p_{i}}<.673634
$$

the upper bound in [5] being .673770 . We will also give a further improvement in the upper bound when 5 is a factor and 3 is not; namely,

$$
\sum_{i=1}^{t} \frac{1}{p_{i}}<.677637
$$

the upper bound in [6] being .678036. (These are six-decimal-place approximations to the bounds obtained.)

We assume henceforth that n is an odd perfect number.
An old result, due to Euler, states that we may write

$$
n=\prod_{i=1}^{t} p_{i}^{\alpha_{i}},
$$

where p_{1}, \ldots, p_{t} are distinct primes and $p_{k} \equiv \alpha_{k} \equiv 1(\bmod 4)$ for just one k in $\{1, \ldots, t\}$ and $\alpha_{i} \equiv 0(\bmod 2)$ when $i \neq k$. We will assume further that $p_{1}<\ldots<p_{t}$, and later will commonly write $\alpha_{(r)}$ for α_{i} when $p_{i}=r$. The subscript k will always have the significance just given and Π^{\prime} and Σ^{\prime} will denote that $i=k$ is to be excluded from the product or sum.

We will need the well-known result

$$
\begin{equation*}
\left.\frac{1}{2}\left(p_{k}+1\right) \right\rvert\, n \tag{2}
\end{equation*}
$$

which is easily proved (see [6]). It follows that

$$
\begin{equation*}
p_{1} \leq \frac{1}{2}\left(p_{k}+1\right) . \tag{3}
\end{equation*}
$$

We also use the inequality

$$
\begin{equation*}
1+x+x^{2}>\exp \left(x+\frac{1}{4} x^{2}\right), \quad 0<x \leq \frac{1}{3} . \tag{4}
\end{equation*}
$$

To prove this, note that
$\exp \left(x+\frac{1}{4} x^{2}\right)-\left(1+x+x^{2}\right)=1+x+\frac{x^{2}}{4}+\frac{1}{2!}\left(x+\frac{x^{2}}{4}\right)^{2}+\cdots-\left(1+x+x^{2}\right)$

$$
=-\frac{1}{4} x^{2}+\frac{x^{3}}{4}+\frac{x^{4}}{32}+\frac{1}{3!}\left(x+\frac{x^{2}}{4}\right)^{3}+\cdots
$$

so we wish to prove that

$$
\frac{x}{4}+\frac{x^{2}}{32}+\frac{1}{3!x^{2}}\left(x+\frac{x^{2}}{4}\right)^{3}+\frac{1}{4!x^{2}}\left(x+\frac{x^{2}}{4}\right)^{4}+\cdots<\frac{1}{4}, \quad 0<x \leq \frac{1}{3} .
$$

Now,

$$
\frac{x}{4}+\frac{x^{2}}{32} \leq \frac{1}{12}+\frac{1}{288}<.09
$$

and

$$
\begin{aligned}
\frac{1}{3!x^{2}}\left(x+\frac{x^{2}}{4}\right)^{3} & +\frac{1}{4!x^{2}}\left(x+\frac{x^{2}}{4}\right)^{4}+\cdots \\
& <\frac{1}{6 x^{2}}\left(x+\frac{x^{2}}{4}\right)^{3} 1+\left(x+\frac{x^{2}}{4}\right)+\left(x+\frac{x^{2}}{4}\right)^{2}+\cdots \\
& \leq \frac{1}{18}\left(\frac{13}{12}\right)^{3} \frac{36}{23}<.12 .
\end{aligned}
$$

Hence (4) is true. Other and better inequalities of this type can be established but the above is sufficient for our present purposes.

Now we prove (1). Since n is perfect,

$$
2 n=\sigma(n)=\prod_{i=1}^{t}\left(1+p_{i}+p_{i}^{2}+\cdots+p_{i}^{\alpha_{i}}\right)
$$

so

$$
2=\prod_{i=1}^{t}\left(1+\frac{1}{P_{i}}+\frac{1}{P_{i}^{2}}+\cdots+\frac{1}{P_{i}^{\alpha}}\right)
$$

By Euler's result, $\alpha_{k} \geq 1$ and $\alpha_{i} \geq 2(i \neq k)$, so

$$
2 \geq\left(1+\frac{1}{p_{k}}\right) \prod_{i=1}^{t}\left(1+\frac{1}{p_{i}}+\frac{1}{p_{i}^{2}}\right)>\left(1+\frac{1}{p_{k}}\right) \prod_{i=1}^{t} \exp \left(\frac{1}{p_{i}}+\frac{1}{4 p_{i}^{2}}\right)
$$

by (4). Hence,

$$
\log 2>\log \left(1+\frac{1}{p_{k}}\right)+\sum_{i=1}^{t} \prime\left(\frac{1}{p_{i}}+\frac{1}{4 p_{i}^{2}}\right)
$$

$$
\begin{aligned}
& >\frac{1}{p_{k}}-\frac{1}{2 p_{k}^{2}}+\sum_{i=1}^{t} \frac{1}{p_{i}}+\frac{1}{4} \sum_{i=1}^{t} \frac{1}{p_{i}^{2}}>\sum_{i=1}^{t} \frac{1}{p_{i}}+\frac{1}{4 p_{1}^{2}}-\frac{1}{2 p_{k}^{2}} \\
& \geq \sum_{i=1}^{t} \frac{1}{p_{i}}+\frac{1}{\left(p_{k}+1\right)^{2}}-\frac{1}{2 p_{k}^{2}}>\sum_{i=1}^{t} \frac{1}{p_{i}}
\end{aligned}
$$

using (3).
We end with the
Theorem: (i) If $15 \mid n$, then

$$
\begin{aligned}
& \sum_{i=1}^{t} \frac{1}{p_{i}}<\frac{1}{3}+\frac{1}{5}+\frac{1}{13}+\frac{1}{61}+\log \frac{2950753}{2815321}=a \text {, say. } \\
& \text { (ii) If } 5 \mid n \text { and } 3 \nmid n \text {, then } \\
& \sum_{i=1}^{t} \frac{1}{p_{i}}<\frac{1}{5}+\frac{1}{31}+\frac{1}{61}+\log \frac{293105}{190861}=b \text {, say. }
\end{aligned}
$$

Proof: The proofs consist of considering a number of cases which are mutually exclusive and exhaustive.
(i) We are given that $p_{1}=3$ and $p_{2}=5$. Suppose first that $\alpha_{1}=2$ and $\alpha_{2}=1$ (so that we are assuming, until the last paragraph of this proof, that $\left.k^{2}=2\right)$. Since $\sigma\left(3^{2}\right)=13$, we have $13 \mid n$.

Suppose $\alpha_{(13)}=2$, so that, since $\sigma\left(13^{2}\right)=183=3 \cdot 61,61 \mid n$. Since also $\sigma(5)=6=2 \cdot 3$, we cannot have $\alpha_{(61)}=2$, for $\sigma\left(61^{2}\right)=3783=3 \cdot 13 \cdot 97$ and we would have $3^{3} \mid n$ (i.e., $\alpha_{1}>2$). Hence, $\alpha_{(61)} \geq 4$. Then, using a simple consequence of (4),

$$
\begin{aligned}
2= & \prod_{i=1}^{t}\left(1+\frac{1}{p_{i}}+\frac{1}{p_{i}^{2}}+\cdots+\frac{1}{p_{i}^{\alpha_{i}}}\right) \\
> & \left(1+\frac{1}{3}+\frac{1}{3^{2}}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{13}+\frac{1}{13^{2}}\right)\left(1+\frac{1}{61}+\frac{1}{61^{2}}\right. \\
& \left.+\frac{1}{61^{3}}+\frac{1}{61^{4}}\right) \times \prod_{\substack{i=3 \\
p_{i} \neq 13,61}}^{t} \exp \left(\frac{1}{p_{i}}\right)
\end{aligned}
$$

so, taking logarithms and rearranging,

$$
\begin{aligned}
\sum_{i=1}^{t} \frac{1}{p_{i}}<\log 2 & -\log \frac{13}{9}-\log \frac{6}{5}-\log \frac{183}{169}-\log \frac{14076605}{13845841} \\
& +\frac{1}{3}+\frac{1}{5}+\frac{1}{13}+\frac{1}{61}=a
\end{aligned}
$$

If $\alpha_{(13)} \geq 4$, then we similarly obtain

$$
\begin{aligned}
\sum_{i=1}^{t} \frac{1}{p_{i}} & <\log 2-\log \left(1+\frac{1}{3}+\frac{1}{3^{2}}\right)-\log \left(1+\frac{1}{5}\right) \\
& -\log \left(1+\frac{1}{13}+\frac{1}{13^{2}}+\frac{1}{13^{3}}+\frac{1}{13^{4}}\right)+\frac{1}{3}+\frac{1}{5}+\frac{1}{13}<\alpha
\end{aligned}
$$

Suppose now that $\alpha_{1} \geq 4$ and $\alpha_{2}=1$. Then,

$$
\sum_{i=1}^{t} \frac{1}{p_{i}}<\log 2-\log \left(1+\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\frac{1}{3^{4}}\right)-\log \left(1+\frac{1}{5}\right)+\frac{1}{3}+\frac{1}{5}<a
$$

Next, suppose that $\alpha_{2} \geq 5$. Then,

$$
\begin{aligned}
\sum_{i=1}^{t} \frac{1}{p_{i}}<\log 2 & -\log \left(1+\frac{1}{3}+\frac{1}{3^{2}}\right) \\
& -\log \left(1+\frac{1}{5}+\frac{1}{5^{2}}+\frac{1}{5^{3}}+\frac{1}{5^{4}}+\frac{1}{5^{5}}\right)+\frac{1}{3}+\frac{1}{5}<\alpha
\end{aligned}
$$

Finally, suppose $k>2$, so $\alpha_{2} \geq 2$. Since $\alpha_{k} \geq 1$, we obtain, proceeding as above,

$$
\begin{aligned}
\log 2 & >\log \left(1+\frac{1}{p_{k}}\right)+\log \left(1+\frac{1}{3}+\frac{1}{3^{2}}\right)+\log \left(1+\frac{1}{5}+\frac{1}{5^{2}}\right)+\sum_{i=3}^{t} \frac{1}{p_{i}} \\
& >\sum_{i=1}^{t} \frac{1}{p_{i}}+\log \frac{13}{9}+\log \frac{31}{25}-\frac{1}{3}-\frac{1}{5}-\frac{1}{2 p_{k}^{2}}
\end{aligned}
$$

But $p_{k} \geq 13$ (though we can easily demonstrate that in fact $p_{k} \geq 17$), so,

$$
\sum_{i=1}^{t} \frac{1}{p_{i}}<\log 2-\log \frac{13}{9}-\log \frac{31}{25}+\frac{1}{3}+\frac{1}{5}+\frac{1}{338}<\alpha
$$

This completes the proof of (i).
(ii) We are given that $p_{1}=5$. The details in the following are similar to those above. Suppose, until the last paragraph of this proof, that $\alpha_{1}=2$. Since $\sigma\left(5^{2}\right)=31$, we have $31 \mid n$. Now, $\sigma\left(31^{2}\right)=993=3 \cdot 331$ and $3 \nmid n$, so we must have $\alpha(31) \geq 4$. It follows from (2) and from the fact that $3 \nmid n$, that if $p_{k}<73$, then p_{k} must be either 13 , 37 , or 61 (so we cannot have $\alpha_{1}=1$).

Suppose first that $p_{k}=61$. Then $\alpha_{(61)} \geq 1$ and

$$
\begin{aligned}
\sum_{i=1}^{t} \frac{1}{p_{i}}<\log 2 & -\log \left(1+\frac{1}{5}+\frac{1}{5^{2}}\right)-\log \left(1+\frac{1}{31}+\frac{1}{31^{2}}+\frac{1}{31^{3}}+\frac{1}{31^{4}}\right) \\
& -\log \left(1+\frac{1}{61}\right)+\frac{1}{5}+\frac{1}{31}+\frac{1}{61}=b
\end{aligned}
$$

If $p_{k}=13$, then, by (2), $p_{2}=7 . \sigma\left(7^{2}\right)=57=3 \cdot 19$, so $\alpha_{2} \geq 4$, since $3 \nmid n$. Also, $\alpha_{(13)} \geq 1$, so

$$
\begin{aligned}
\sum_{i=1}^{t} \frac{1}{p_{i}}<\log 2 & -\log \left(1+\frac{1}{5}+\frac{1}{5^{2}}\right)-\log \left(1+\frac{1}{7}+\frac{1}{7^{2}}+\frac{1}{7^{3}}+\frac{1}{7^{4}}\right) \\
& -\log \left(1+\frac{1}{13}\right)-\log \left(1+\frac{1}{31}+\frac{1}{31^{2}}+\frac{1}{31^{3}}+\frac{1}{31^{4}}\right) \\
& +\frac{1}{5}+\frac{1}{7}+\frac{1}{13}+\frac{1}{31}<b
\end{aligned}
$$

If $p_{k}=37$, then, by (2), 19|n. $\sigma\left(19^{2}\right)=381=3 \cdot 127$, so $\alpha_{(19)} \geq 4$. Since $\alpha_{k} \geq 1$,

$$
\begin{aligned}
\sum_{i=1}^{t} \frac{1}{p_{i}}<\log 2 & -\log \left(1+\frac{1}{5}+\frac{1}{5^{2}}\right)-\log \left(1+\frac{1}{19}+\frac{1}{19^{2}}+\frac{1}{19^{3}}+\frac{1}{19^{4}}\right) \\
& -\log \left(1+\frac{1}{31}+\frac{1}{31^{2}}+\frac{1}{31^{3}}+\frac{1}{31^{4}}\right) \\
& -\log \left(1+\frac{1}{37}\right)+\frac{1}{5}+\frac{1}{19}+\frac{1}{31}+\frac{1}{37}<b
\end{aligned}
$$

If $p_{k} \geq 73$, then, as in the last paragraph of the proof of (i), we have

$$
\begin{aligned}
\sum_{i=1}^{t} \frac{1}{p_{i}}<\log 2-\log \left(1+\frac{1}{5}+\frac{1}{5^{2}}\right) & -\log \left(1+\frac{1}{31}+\frac{1}{31^{2}}+\frac{1}{31^{3}}+\frac{1}{31^{4}}\right) \\
& +\frac{1}{5}+\frac{1}{31}+\frac{1}{2 \cdot 73^{2}}<b
\end{aligned}
$$

Finally, suppose $\alpha_{1} \geq 4$. Then $p_{k} \geq 13$ and, as in the preceding paragraph,

$$
\sum_{i=1}^{t} \frac{1}{p_{i}}<\log 2-\log \left(1+\frac{1}{5}+\frac{1}{5^{2}}+\frac{1}{5^{3}}+\frac{1}{5^{4}}\right)+\frac{1}{5}+\frac{1}{2 \cdot 13^{2}}<b
$$

This completes the proof of (ii).
I am grateful to Professor H. Halberstam for suggesting a simplification of this work through more explicit use of the inequality (4).

REFERENCES

1. M. Buxton \& S.E1more, "An Extension of Lower Bounds for Odd Perfect Numbers," Notices Amer. Math. Soc., Vo1. 23 (1976), p. A-55.
2. D. B. Gillies, "Three New Mersenne Primes and a Statistical Theory," Math. Comp., Vol. 18 (1964), pp. 93-97.
3. Guiness Book of Records, 22nd ed., 1975, p. 81.
4. P. Hagis, Jr., "Every Odd Perfect Number Has at Least Eight Prime Factors," Notices Amer. Math. Soc., Vol. 22 (1975), p. A-60.
5. D. Suryanarayana, "On Odd Perfect Numbers II," Proc. Amer. Math. Soc., Vol. 14 (1963), pp. 896-904.
6. D. Suryanarayana \& P. Hagis, Jr., "A Theorem Concerning Odd Perfect Numbers," The Fibonacci Quarterly, Vo1. 8, No. 3 (1970), pp. 337-346, 374.

A SIMPLE CONTINUED FRACTION REPRESENTS
 A MEDIANT NEST OF INTERVALS
 IRVING ADLER
 North Bennington, VT 05257

1. While working on some mathematical aspects of the botanical problem of phyllotaxis, I came upon a property of simple continued fractions that is simple, pretty, useful, and easy to prove, but seems to have been overlooked in the literature. I present it here in the hope that it will be of interest to people who have occasion to teach continued fractions. The property is stated below as a theorem after some necessary terms are defined.
2. Terminology: For any positive integer n, let $n / 0$ represent ∞. Let us designate as a "fraction" any positive rational number, or 0 , or ∞, in the form a / b, where a and b are nonnegative integers, and either a or b is not zero. We say the fraction is in lowest terms if $(a, b)=1$. Thus, 0 in lowest terms is $0 / 1$, and ∞ in lowest terms is $1 / 0$.

If inequality of fractions is defined in the usual way, that is

$$
a / b<c / d \text { if } a d<b c
$$

it follows that $x<\infty$ for $x=0$ or any positive rational number.

