THE RANK-VECTOR OF A PARTITION

that $e < e_i$ and $V(p^e) \le e - i$, where $i \in \{2, 3, 4\}$? (By the computational results in [5] we may conclude that this does not happen when p < 30,000.)

2. Is there a power $n = p^e$ of some irregular prime such that

$$V(p^e) \leq e - 5?$$

Final Remark: Professor L. Carlitz and Jack Levine in [3] asked similar questions about Euler numbers and polynomials. Analogous results about the periodicity of the sequence of the Bernoulli polynomials reduced modulo n and the polynomial functions over Z generated by the Bernoulli polynomials will be derived in a later paper.

REFERENCES

- 1. Z. I. Borevic & I. R. Safarevic, *Number Theory*, "Nauka" (Moscow, 1964; English trans. in *Pure and Applied Mathematics*, Vol. 20 [New York: Academic Press, 1966]).
- L. Carlitz, "Bernoulli Numbers," The Fibonacci Quarterly, Vol. 6, No. 3 (1968), pp. 71-85.
- L. Carlitz & J. Levine, "Some Problems Concerning Kummer's Congruences for the Euler Numbers and Polynomials," *Trans. Amer. Math. Soc.*, Vol. 96 (1960), pp. 23-37.
- 4. J. Fresnel, "Nombres de Bernoulli et fonctions L p-adiques," Ann. Inst. Fourier, Grenoble, Vol. 17, No. 2 (1967), pp. 281-333.
- 5. W. Johnson, "Irregular Prime Divisors of the Bernoulli Numbers," Mathematics of Computation, Vol. 28, No. 126 (1974), pp. 652-657.

THE RANK-VECTOR OF A PARTITION

HANSRAJ GUPTA

Panjab University, Chandigarh, India

1. INTRODUCTION

The Ferrars graph of a partition may be regarded as a set of nested right angles of nodes. The depth of a graph is the number of right angles it has. For example, the graph

548

is four deep or is of depth four. It is clear that a graph of depth $k\ {\rm can-not}\ {\rm have}\ {\rm less}\ {\rm than}\ k^2$ nodes.

Denote by x_i the number of nodes on the horizontal, and by y_i the number of those on the vertical section of the *i*th right angle, starting with the outermost right angle as the first. Then, the partition can be very conveniently represented by the 2 x k matrix:

$$\begin{bmatrix} x_1 & x_2 & x_3 & \dots & x_k \\ y_1 & y_2 & y_3 & \dots & y_k \end{bmatrix}$$

or simply by

 $\begin{bmatrix} x_i \\ y_i \end{bmatrix}_k.$

Evidently, we must have

(1.1)
$$x_i \ge x_{i+1} + 1, \quad y_i \ge y_{i+1} + 1, \quad i \le k - 1.$$

It must be remembered that x's and y's are positive integers. The Atkin-ranks of the graph [1] are given by

(1.2)
$$R_k = [x_1 - y_1, x_2 - y_2, \dots, x_k - y_k] = [x_i - y_i]_k,$$

which we shall call the rank-vector both of the graph and of the partition it represents.

The number of nodes in the graph is given by

(1.3)
$$n = \sum_{i=1}^{k} (x_i + y_i - 1).$$

In our graph, the matrix

$$\begin{bmatrix} 7 & 5 & 3 & 2 \\ 9 & 4 & 3 & 1 \end{bmatrix}$$

represents a partition of 30 and its rank-vector is

 $[-2 \ 1 \ 0 \ 1].$

Obviously, if R_k is the rank-vector of a partition, then the rank-vector of its conjugate partition is $-R_k$. Hence, the rank-vector of a self-conjugate partition of depth k must be $[0]_k$.

Again, if $[r_i]_k$ is the rank-vector of the partition given by $\begin{bmatrix} x_i \\ y_i \end{bmatrix}_k$, then we have

 $(1.4) y_i = x_i - r_i.$

2. SOME CONSEQUENCES OF (1.1)

Since $y_i \ge y_{i+1} + 1$, we must have $x_i - r_i \ge x_{i+1} - r_{i+1} + 1$. Hence, for each $i \le k - 1$,

(2.1)
$$x_i \ge \max(x_{i+1} + 1, x_{i+1} + r_i - r_{i+1} + 1).$$

Since y_k is a positive integer, we conclude that

(2.2)
$$x_k \ge \max(r_k + 1, 1).$$

From (1.3) and (1.4), we further have

(2.3)
$$\sum_{i=1}^{k} x_i = \frac{1}{2} \left(n + k + \sum_{i=1}^{k} r_i \right).$$

549

THE RANK-VECTOR OF A PARTITION

Hence a partition of n with a given rank-vector $[r_i]_k$ can exist only if n has the same parity as

 $k + \sum_{i=1}^{k} r_i.$ In what follows, we assume that our n's satisfy this condition. Moreover, i shall invariably run over the integers from 1 to k.

3. THE BASIS OF A GIVEN RANK-VECTOR

There are an infinite number of Ferrars graphs which have the same rankvector. All such graphs have the same depth but not the same number of nodes necessarily.

Theorem: Among the graphs with the same rank-vector, there is just one with the least number of nodes.

Proof: Using the equality sign in place of the sign \geq in (2.2) and (2.1), we obtain the least value of each of the x_i 's, $i \leq k$. (1.3) and (1.4) then give n_0 that is the least n for which a graph with the given rank-vector exists. This proves the theorem.

Incidentally, we also get the unique partition with the given rank-vector and the least number of nodes. We call this unique partition the basis of the given rank-vector.

Example: Let us find the basis of the rank-vector $[-2 \ 3 \ 0 \ 1]$. With the equality sign in place of the of the inequality sign, (2.2) gives $x_4 = 2$. With the equality sign in place of \geq , (2.1) now gives, in succession,

$$x_3 = 3, x_2 = 7, \text{ and } x_1 = 8.$$

From (4) of Section 1, we now have

 $y_4 = 1$, $y_3 = 3$, $y_2 = 4$, and $y_1 = 10$.

Hence, the required basis is

<u>8</u>	7	3	2]
_10	4	3	1

This represents a partition of 34.

We leave the reader to verify the following two trivial-looking but very useful observations:

(a) If $\begin{bmatrix} x_i \\ y_i \end{bmatrix}$ is the basis of $[r_i]$ and h is an integer, then the basis of the vector $[r_i + h]$ is given by

$$\begin{bmatrix} x_i + h \\ y_i \end{bmatrix} \text{ or } \begin{bmatrix} x_i \\ y_i - h \end{bmatrix}$$

according as h is positive or negative.

(b) If $h_1 \ge h_2 \ge \ldots \ge h_k \ge 0$ are integers, then the graphs of

$\begin{bmatrix} x_i \end{bmatrix}$	and	$\int x_i$	+	h_i]
y_i	and	y_i	+	h_i
	1			

have the same rank-vector.

THE RANK-VECTOR OF A PARTITION

4. PARTITIONS OF *n* WITH A GIVEN RANK-VECTOR

Let $\begin{bmatrix} x_i \\ y_i \end{bmatrix}_k$ be the basis of the given rank-vector and n_0 the number of nodes in the basis. For our n to have any partitions with the given rank-vector, it is necessary that n has the same parity as n_0 and $n \ge n_0$. Assume that this is so. Write

$$m = \frac{1}{2}(n - n_0).$$

List all the partitions of m into at most k parts. Let

$$m = h_1 + h_2 + \cdots + h_k,$$

with $h_1 \ge h_2 \ge \ldots \ge h_k \ge 0$, be any such partition of *m*. Then the matrix

(4.1)
$$\begin{bmatrix} x_i + h_i \\ y_i + h_i \end{bmatrix}$$

provides a partition of n with the given rank-vector.

The one-one correspondence between the partitions of m and the matrices (4.1) establishes the following

Theorem: The number of partitions of n with the given rank-vector is the same as the number of partitions of m into at most k parts where m is as defined above.

Example: Let the given rank-vector be $\begin{bmatrix} -3 & 2 & 1 & -1 \end{bmatrix}$ and n = 43. Then the basis of the vector is readily seen to be

$$\begin{bmatrix} 7 & 6 & 4 & 1 \\ 10 & 4 & 3 & 2 \end{bmatrix}$$

so that $n_0 = 33$ and m = 5.

The partitions of 5 into at most 4 parts are:

5; 4 + 1, 3 + 2; 3 + 1 + 1, 2 + 2 + 1; 2 + 1 + 1 + 1.

Therefore, the required partitions of 43 are provided by the matrices:

[12	6	4	1]	[11	7	4	1]	[10	8	4	1]
[12 [15]	4	3	2],	14	5	3	2] ,	13	6	3	2] •
[10	7	5	1]	۶ م	8	5	1]	۶ م	7	5	$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$.
13	5	1.	2,	12	6	7	2,	12	5	4	3.

We leave it to the reader to see how the graphs of partitions of n can be constructed directly from that of the basis. As an exercise, he/she might also find a formula for the number of self-conjugate partitions of n.

As a corollary to the theorem of this section, we have

Corollary: The number of partitions of n + hk, h > 0, with rank-vector $[r_i + h]$ is the same as the number of partitions of n with rank-vector $[r_i]$. This follows immediately from observation (a) in the preceding section.

5. THE BOUNDS FOR THE ATKIN-RANKS

What can be said concerning the Atkin-ranks of partitions of n for which $x_1 \leq a$, $y_1 \leq b$?

We show that these ranks are bounded both above and below. Since $x_1 \leq a$, the number of rows a partition of n can occupy is not less than u, where

 $u - 1 < n/a \leq u$.

Hence, none of the ranks can exceed (a - u).

Similarly, none of the ranks can fall short of (v - b), where

 $v - 1 < n/b \leq v$.

Of course, for n to have a partition of said type, it is necessary to have

 $n \leq ab$.

REFERENCE

1. A. O. L. Atkin, "A Note on Ranks and Conjugacy of Partitions," *Quart. J. Math.*, Vol. 17, No. 2 (1966), pp. 335-338.

THE ANDREWS FORMULA FOR FIBONACCI NUMBERS

HANSRAJ GUPTA

Panjab University, Candigarh, India

1. In what follows: small letters denote integers; n > 0; p denotes an odd prime other than 5; [] is the greatest integer function; and for convenience, we write

$$(n;r)$$
 for $\binom{n}{r}$.

The two relations

(1.1)
$$(n;r) = (n;n-r)$$
, and

 $(1.2) \qquad (n;r-1) + (n;r) = (n+1;r)$

are freely used, and we take, as usual,

(t;0) = 1 for all integers t, and

(n;r) = 0 if r > n, and also when r is negative.

We further define

(1.3)
$$S(n,r) = \sum_{j} (n;j),$$

where j runs over all nonnegative integers which are \exists r (mod 5).

As a consequence of this definition and the relations (1.1) and (1.2) we have

(1.4) S(n,r) = S(n,n - r), and

(1.5) S(n, p - 1) + S(n, p) = S(n + 1, p).

2. The Fibonacci numbers F_n are defined by the relations

(2.1) $F_1 = 1 = F_2$, and

(2.2) $F_n + F_{n+1} = F_{n+2}$ for each $n \ge 1$.