that $e<e_{i}$ and $V\left(p^{e}\right) \leq e-i$, where $i \varepsilon\{2,3,4\}$ ? (By the computational results in [5] we may conclude that this does not happen when $p<30,000$.)
2. Is there a power $n=p^{e}$ of some irregular prime such that

$$
V\left(p^{e}\right) \leq e-5 ?
$$

Final Remark: Professor L. Carlitz and Jack Levine in [3] asked similar questions about Euler numbers and polynomials. Analogous results about the periodicity of the sequence of the Bernoulli polynomials reduced modulo $n$ and the polynomial functions over $Z$ generated by the Bernoulli polynomials will be derived in a later paper.

## REFERENCES

1. Z. I. Borevic \& I. R. Safarevic, Number Theory, "Nauka" (Moscow, 1964; English trans. in Pure and Applied Mathematics, Vol. 20 [New York: Academic Press, 1966]).
2. L. Carlitz, "Bernoulli Numbers," The Fibonacci Quarterly, Vol. 6, No. 3 (1968), pp. 71-85.
3. L. Carlitz \& J. Levine, 'Some Problems Concerning Kummer's Congruences for the Euler Numbers and Polynomials," Trans. Amer. Math. Soc., Vo1. 96 (1960), pp. 23-37.
4. J. Fresnel, "Nombres de Bernoulli et fonctions $L$ p-adiques," Ann. Inst. Fourier, Grenoble, Vol. 17, No. 2 (1967), pp. 281-333.
5. W. Johnson, "Irregular Prime Divisors of the Bernoulli Numbers," Mathematics of Computation, Vo1. 28, No. 126 (1974), pp. 652-657.
*****

THE RANK-VECTOR OF A PARTITION
HANSRAJ GUPTA
Panjab University, Chandigarh, India

## 1. INTRODUCTION

The Ferrars graph of a partition may be regarded as a set of nested right angles of nodes. The depth of a graph is the number of right angles it has. For example, the graph

is four deep or is of depth four. It is clear that a graph of depth $k$ cannot have less than $k^{2}$ nodes.

Denote by $x_{i}$ the number of nodes on the horizontal, and by $y_{i}$ the number of those on the vertical section of the $i$ th right angle, starting with the outermost right angle as the first. Then, the partition can be very conveniently represented by the $2 \times k$ matrix:

$$
\left[\begin{array}{lllll}
x_{1} & x_{2} & x_{3} & \cdots & x_{k} \\
y_{1} & y_{2} & y_{3} & \cdots & y_{k}
\end{array}\right]
$$

or simply by

$$
\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]_{k}
$$

Evidently, we must have

$$
\begin{equation*}
x_{i} \geq x_{i+1}+1, \quad y_{i} \geq y_{i+1}+1, \quad i \leq k-1 \tag{1.1}
\end{equation*}
$$

It must be remembered that $x^{\prime}$ s and $y^{\prime}$ s are positive integers. The Atkin-ranks of the graph [1] are given by
(1.2) $\quad R_{k}=\left[x_{1}-y_{1}, x_{2}-y_{2}, \ldots, x_{k}-y_{k}\right]=\left[x_{i}-y_{i}\right]_{k}$,
which we shall call the rank-vector both of the graph and of the partition it represents.

The number of nodes in the graph is given by

$$
\begin{equation*}
n=\sum_{i=1}^{k}\left(x_{i}+y_{i}-1\right) . \tag{1.3}
\end{equation*}
$$

In our graph, the matrix

$$
\left[\begin{array}{llll}
7 & 5 & 3 & 2 \\
9 & 4 & 3 & 1
\end{array}\right]
$$

represents a partition of 30 and its rank-vector is

$$
\left[\begin{array}{llll}
{[-2} & 1 & 0 & 1] .
\end{array}\right.
$$

Obviously, if $R_{k}$ is the rank-vector of a partition, then the rank-vector of its conjugate partition is $-R_{k}$. Hence, the rank-vector of a self-conjugate partition of depth $k$ must be $[0]_{k}$.

Again, if $\left[r_{i}\right]_{k}$ is the rank-vector of the partition given by $\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]_{k}$, then we have

$$
\begin{equation*}
y_{i}=x_{i}-x_{i} . \tag{1.4}
\end{equation*}
$$

2. SOME CONSEQUENCES OF (1.1)

Since $y_{i} \geq y_{i+1}+1$, we must have $x_{i}-r_{i} \geq x_{i+1}-r_{i+1}+1$. Hence, for each $i \leq k-1$,

$$
\begin{equation*}
x_{i} \geq \max \left(x_{i+1}+1, x_{i+1}+r_{i}-r_{i+1}+1\right) \tag{2.1}
\end{equation*}
$$

Since $y_{k}$ is a positive integer, we conclude that

$$
\begin{equation*}
x_{k} \geq \max \left(r_{k}+1,1\right) \tag{2.2}
\end{equation*}
$$

From (1.3) and (1.4), we further have

$$
\begin{equation*}
\sum_{i=1}^{k} x_{i}=\frac{1}{2}\left(n+k+\sum_{i=1}^{k} r_{i}\right) \tag{2.3}
\end{equation*}
$$

Hence a partition of $n$ with a given rank-vector $\left[r_{i}\right]_{k}$ can exist only if $n$ has the same parity as

$$
k+\sum_{i=1}^{k} r_{i}
$$

In what follows, we assume that our $n$ 's satisfy this condition. Moreover, $i$ shall invariably run over the integers from 1 to $k$.

## 3. THE BASIS OF A GIVEN RANK-VECTOR

There are an infinite number of Ferrars graphs which have the same rankvector. All such graphs have the same depth but not the same number of nodes necessarily.

Theorem: Among the graphs with the same rank-vector, there is just one with the least number of nodes.

Proof: Using the equality sign in place of the sign $\geq$ in (2.2) and (2.1), we obtain the least value of each of the $x_{i}$ 's, $i \leq k$. (1.3) and (1.4) then give $n_{0}$ that is the least $n$ for which a graph with the given rank-vector exists. This proves the theorem.

Incidentally, we also get the unique partition with the given rank-vector and the least number of nodes. We call this unique partition the basis of the given rank-vector.

Example: Let us find the basis of the rank-vector $\left[\begin{array}{llll}-2 & 3 & 0 & 1\end{array}\right]$. With the equality sign in place of the of the inequality sign, (2.2) gives $x_{4}=2$. With the equality sign in place of $\geq$, (2.1) now gives, in succession,

$$
x_{3}=3, x_{2}=7, \text { and } x_{1}=8
$$

From (4) of Section 1, we now have

$$
y_{4}=1, y_{3}=3, y_{2}=4, \text { and } y_{1}=10
$$

Hence, the required basis is

$$
\left[\begin{array}{rrrr}
8 & 7 & 3 & 2 \\
10 & 4 & 3 & 1
\end{array}\right]
$$

This represents a partition of 34 .
We leave the reader to verify the following two trivial-looking but very useful observations:
(a) If $\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]$ is the basis of $\left[r_{i}\right]$ and $h$ is an integer, then the basis of the vector $\left[r_{i}+h\right]$ is given by

$$
\left[\begin{array}{c}
x_{i}+h \\
y_{i}
\end{array}\right] \text { or }\left[\begin{array}{c}
x_{i} \\
y_{i}-h
\end{array}\right]
$$

according as $h$ is positive or negative.
(b) If $h_{1} \geq h_{2} \geq \ldots \geq h_{k} \geq 0$ are integers, then the graphs of

$$
\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right] \text { and }\left[\begin{array}{l}
x_{i}+h_{i} \\
y_{i}+h_{i}
\end{array}\right]
$$

have the same rank-vector.

## 4. PARTITIONS OF $n$ WITH A GIVEN RANK-VECTOR

Let $\left[\begin{array}{l}x_{i} \\ y_{i}\end{array}\right]_{k}$ be the basis of the given rank-vector and $n_{0}$ the number of nodes in the basis. For our $n$ to have any partitions with the given rank-vector, it is necessary that $n$ has the same parity as $n_{0}$ and $n \geq n_{0}$. Assume that this is so. Write

$$
m=\frac{1}{2}\left(n-n_{0}\right) .
$$

List all the partitions of $m$ into at most $k$ parts. Let

$$
m=h_{1}+h_{2}+\cdots+h_{k}
$$

with $h_{1} \geq h_{2} \geq \ldots \geq h_{k} \geq 0$, be any such partition of $m$. Then the matrix

$$
\left[\begin{array}{l}
x_{i}+h_{i}  \tag{4.1}\\
y_{i}+h_{i}
\end{array}\right]
$$

provides a partition of $n$ with the given rank-vector.
The one-one correspondence between the partitions of $m$ and the matrices (4.1) establishes the following

Theorem: The number of partitions of $n$ with the given rank-vector is the same as the number of partitions of $m$ into at most $k$ parts where $m$ is as defined above.

Example: Let the given rank-vector be $\left[\begin{array}{cccc}-3 & 2 & 1 & -1\end{array}\right]$ and $n=43$. Then the basis of the vector is readily seen to be

$$
\left[\begin{array}{rrrr}
7 & 6 & 4 & 1 \\
10 & 4 & 3 & 2
\end{array}\right]
$$

so that $n_{0}=33$ and $m=5$.
The partitions of 5 into at most 4 parts are:

$$
5 ; 4+1,3+2 ; 3+1+1,2+2+1 ; 2+1+1+1
$$

Therefore, the required partitions of 43 are provided by the matrices:

$$
\left.\begin{array}{llll}
{\left[\begin{array}{llll}
12 & 6 & 4 & 1 \\
15 & 4 & 3 & 2
\end{array}\right],} & {\left[\begin{array}{llll}
11 & 7 & 4 & 1 \\
14 & 5 & 3 & 2
\end{array}\right],} & {\left[\begin{array}{lll}
10 & 8 & 4 \\
13 & 6 & 3
\end{array}\right.} & 2
\end{array}\right] .
$$

We leave it to the reader to see how the graphs of partitions of $n$ can be constructed directly from that of the basis. As an exercise, he/she might also find a formula for the number of self-conjugate partitions of $n$.

As a corollary to the theorem of this section, we have
Corollary: The number of partitions of $n+h k, h>0$, with rank-vector $\left[r_{i}+h\right]$ is the same as the number of partitions of $n$ with rank-vector $\left[r_{i}\right]$.

This follows immediately from observation (a) in the preceding section.

## 5. THE BOUNDS FOR THE ATKIN-RANKS

What can be said concerning the Atkin-ranks of partitions of $n$ for which $x_{1} \leq a, y_{1} \leq b ?$

We show that these ranks are bounded both above and below. Since $x_{1} \leq a$, the number of rows a partition of $n$ can occupy is not less than $u$, where $u-1<n / \alpha \leq u$.

Hence, none of the ranks can exceed ( $\alpha-u$ ).
Similarly, none of the ranks can fall short of $(v-b)$, where
$v-1<n / b \leq v$.
Of course, for $n$ to have a partition of said type, it is necessary to have $n \leq a b$.

REFERENCE

1. A. O. L. Atkin, "A Note on Ranks and Conjugacy of Partitions," Quart. J. Math., Vol. 17, No. 2 (1966), pp. 335-338.

## *****

## THE ANDREWS FORMULA FOR FIBONACCI NUMBERS

HANSRAJ GUPTA
Panjab University, Candigarh, India

1. In what follows: small letters denote integers; $n>0 ; p$ denotes an odd prime other than 5; [ ] is the greatest integer function; and for convenience, we write

$$
(n ; r) \text { for }\binom{n}{r}
$$

The two relations

$$
\begin{array}{ll}
(1.1) & (n ; r)=(n ; n-r), \text { and }  \tag{1.1}\\
(1.2) & (n ; r-1)+(n ; r)=(n+1 ; r)
\end{array}
$$

are freely used, and we take, as usual,

$$
\begin{aligned}
& (t ; 0)=1 \text { for all integers } t, \text { and } \\
& (n ; r)=0 \text { if } r>n, \text { and also when } r \text { is negative. }
\end{aligned}
$$

We further define

$$
\begin{equation*}
S(n, r)=\sum_{j}(n ; j) \tag{1.3}
\end{equation*}
$$

where $j$ runs over all nonnegative integers which are $\equiv r(\bmod 5)$.
As a consequence of this definition and the relations (1.1) and (1.2) we have
$S(n, r)=S(n, n-r)$, and
(1.5) $S(n, r-1)+S(n, r)=S(n+1, r)$.
2. The Fibonacci numbers $F_{n}$ are defined by the relations

$$
\begin{align*}
& F_{1}=1=F_{2}, \text { and }  \tag{2.1}\\
& F_{n}+F_{n+1}=F_{n+2} \text { for each } n \geq 1 \tag{2.2}
\end{align*}
$$

