We show that these ranks are bounded both above and below. Since $x_{1} \leq a$, the number of rows a partition of n can occupy is not less than u, where $u-1<n / \alpha \leq u$.

Hence, none of the ranks can exceed ($\alpha-u$).
Similarly, none of the ranks can fall short of $(v-b)$, where
$v-1<n / b \leq v$.
Of course, for n to have a partition of said type, it is necessary to have $n \leq a b$.

REFERENCE

1. A. O. L. Atkin, "A Note on Ranks and Conjugacy of Partitions," Quart. J. Math., Vol. 17, No. 2 (1966), pp. 335-338.

THE ANDREWS FORMULA FOR FIBONACCI NUMBERS

HANSRAJ GUPTA
Panjab University, Candigarh, India

1. In what follows: small letters denote integers; $n>0 ; p$ denotes an odd prime other than 5; [] is the greatest integer function; and for convenience, we write

$$
(n ; r) \text { for }\binom{n}{r}
$$

The two relations

$$
\begin{array}{ll}
(1.1) & (n ; r)=(n ; n-r), \text { and } \tag{1.1}\\
(1.2) & (n ; r-1)+(n ; r)=(n+1 ; r)
\end{array}
$$

are freely used, and we take, as usual,

$$
\begin{aligned}
& (t ; 0)=1 \text { for all integers } t, \text { and } \\
& (n ; r)=0 \text { if } r>n, \text { and also when } r \text { is negative. }
\end{aligned}
$$

We further define

$$
\begin{equation*}
S(n, r)=\sum_{j}(n ; j) \tag{1.3}
\end{equation*}
$$

where j runs over all nonnegative integers which are $\equiv r(\bmod 5)$.
As a consequence of this definition and the relations (1.1) and (1.2) we have
$S(n, r)=S(n, n-r)$, and
(1.5) $S(n, r-1)+S(n, r)=S(n+1, r)$.
2. The Fibonacci numbers F_{n} are defined by the relations

$$
\begin{align*}
& F_{1}=1=F_{2}, \text { and } \tag{2.1}\\
& F_{n}+F_{n+1}=F_{n+2} \text { for each } n \geq 1 \tag{2.2}
\end{align*}
$$

G. E. Andrews [1] has given the following formulas for F_{n} :

$$
\begin{align*}
& F_{n}=\sum_{j}(-1)^{j}(n-1 ;[(n-1-5 j) / 2]) \tag{2.3}\\
& F_{n}=\sum_{j}(-1)^{j}(n ;[(n-1-5 j) / 2]) ; \tag{2.4}
\end{align*}
$$

where j runs over the set of integers.
The object of this note is to provide a simple proof of these formulas and to obtain some congruence properties of F_{n}. Let

$$
[(n-1) / 2] \equiv m(\bmod 5)
$$

so that

$$
n-1=2 m \text { or } 2 m+1(\bmod 10)
$$

according as n is odd or even. Then (2.3) and (2.4) can be written as:
(2.5) $\quad F_{n}=S(n-1, m)-S(n-1, m-2)$;
(2.6) $\quad F_{n}=S(n, m)-S(n, m-1)$.

We first assert that (2.5) and (2.6) are equivalent and prove the assertion as follows:

For any integer j, we have

$$
(n ; m+5 j)-(n-1 ; m+5 j)=(n-1 ; m+5 j-1) .
$$

A1so

$$
\begin{aligned}
& (n ; m-1+5 j)-(n-1 ; m-2+5 j) \\
& \quad=(n ; n-m+1-5 j)-(n-1 ; n-m+1-5 j) \\
& \quad=(n-1 ; n-m-5 j) \\
& \quad=(n-1 ; m+5 j-1) .
\end{aligned}
$$

Hence, letting j vary suitably, we get

$$
S(n, m)-S(n-1, m)=S(n, m-1)-S(n-1, m-2)
$$

and our assertion follows immediately.
3. Proof of (2.5) is by induction. It is easy to verify that (2.5) and (2.6) hold for $n=1$ and $n=2$. Assume that they hold for each $n \leq t+1$. Then, from (2.6), we have
(3.1) $\quad F_{t}=S(t, m)-S(t, m-1)$
with $m \equiv[(t-1) / 2](\bmod 5)$. For the same m, (2.5) gives
(3.2) $\quad F_{t+1}=S(t, m)-S(t, m-2)$ for t odd,
(3.3) $\quad=S(t, m+1)-S(t, m-1)$ for t even.

If t is odd, let $t=10 k+2 m+1$; then
(3.4)

$$
S(t, m)=S(t, t-m)=S(t, 10 k+m+1)=S(t, m+1)
$$

If t is even, let $t=10 k+2 m+2$; then
(3.5)

$$
S(t, m-1)=S(t, t-m+1)=S(t, 10 k+m+3)=S(t, m-2)
$$

so that
(3.6)

$$
F_{t+1}=S(t, m+1)-S(t, m-2) \text { for } t \text { odd as well as } t \text { even. }
$$

From (3.1) and (3.6), we get

$$
\begin{aligned}
F_{t}+F_{t+1} & =\{S(t, m)+S(t, m+1)\}-\{S(t, m-1)+S(t, m-2)\} \\
& =S(t+1, m+1)-S(t+1, m-1)
\end{aligned}
$$

Thus,

$$
F_{t+2}=S(t+1, m+1)-S(t+1, m-1)
$$

Inductive reasoning now proves (2.5) for all $n>0$.
4. From (2.5) and (2.6), we can derive not only the well-known congruences modulo p for F_{p}, F_{p+1}, and F_{p-1} (in the manner of Andrews), but also some congruences modulo p^{2}.
We first give the expressions for $F_{p^{2}}, F_{p^{2}+1}$, and $F_{p^{2}-1}$.
(i) If p is a prime of the form $10 k \pm 1$, then we have

$$
\left[\left(p^{2}-1\right) / 2\right] \equiv 0(\bmod 5)
$$

and so also

$$
\left[p^{2} / 2\right] \equiv 0(\bmod 5)
$$

Hence,

$$
\begin{aligned}
& F_{p^{2}}=S\left(p^{2}, 0\right)-S\left(p^{2}, 4\right) \\
& F_{p^{2}+1}=S\left(p^{2}, 0\right)-S\left(p^{2}, 3\right)
\end{aligned}
$$

and therefore,

$$
F_{p^{2}-1}=S\left(p^{2}, 4\right)-S\left(p^{2}, 3\right)
$$

(ii) If p is a prime of the form $10 k \pm 3$, then

$$
\left[\left(p^{2}-1\right) / 2\right] \equiv 4(\bmod 5)
$$

and so also is

$$
\left[p^{2} / 2\right] \equiv 4(\bmod 5)
$$

Hence,

$$
\begin{aligned}
& F_{p^{2}}=S\left(p^{2}, 4\right)-S\left(p^{2}, 3\right) \\
& F_{p^{2}+1}=S\left(p^{2}, 4\right)-S\left(p^{2}, 2\right)
\end{aligned}
$$

and therefore,

$$
F_{p^{2}-1}=S\left(p^{2}, 3\right)-S\left(p^{2}, 2\right)
$$

A11 that we need now for our purpose is the
Lemma: For $1 \leq h \leq p^{2}-1$,

$$
\left(p^{2} ; h\right) \equiv(-1)^{h-1} p^{2} / h\left(\bmod p^{2}\right)
$$

Proof: We have

$$
\left(p^{2} ; h\right)=\frac{p^{2}}{h} \cdot \frac{p^{2}-1}{1} \cdot \frac{p^{2}-2}{2} \cdot \cdots \cdot \frac{p^{2}-h+1}{h-1} .
$$

Since for $1 \leq r \leq h-1$,

$$
\frac{p^{2}-r}{r} \equiv-1\left(\bmod p^{2}\right)
$$

the lemma follows immediately.

Evidently, if f 犺, then

$$
\begin{equation*}
\left(p^{2} ; h\right) \equiv 0\left(\bmod p^{2}\right) ; \tag{4.1}
\end{equation*}
$$

otherwise,
(4.2) $\quad\left(p^{2} ; h\right) / p \equiv(-1)^{h-1} p / h(\bmod p)$.

We have, of course,

$$
\begin{equation*}
\left(p^{2} ; 0\right)=1=\left(p^{2} ; p^{2}\right) . \tag{4.3}
\end{equation*}
$$

As an application of the lemma, we have, for example:
(i) when $1 \leq m \leq 4$,

$$
\begin{equation*}
S\left(p^{2}, m\right) \equiv \sum_{j \geq 0}\left(p^{2} ; m+5 j\right)\left(\bmod p^{2}\right) \tag{4.4}
\end{equation*}
$$

On the right of the sigma in (4.4), we need consider only those nonnegative values of j for which

$$
m+5 j \leq p^{2} \text { and } m+5 j \equiv 0(\bmod p) ;
$$

(ii) when $m=0$, we have,
so that

$$
\begin{equation*}
S\left(p^{2}, 0\right)-1 \equiv \sum_{j \geq 1}\left(p^{2} ; 5 j\right)\left(\bmod p^{2}\right) \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{S\left(p^{2}, 0\right)-1}{p} \equiv \sum_{j}(-1)^{j-1} / 5 j(\bmod p) \tag{4.6}
\end{equation*}
$$

where $1 \leq j<p / 5$. Thus

$$
\frac{F_{121}-1}{11} \equiv \frac{1}{5}-\frac{1}{10}+\frac{1}{4}-\frac{1}{9} \equiv 9-10+3-5 \equiv 8(\bmod 11) .
$$

Therefore,

$$
F_{121} \equiv 89(\bmod 121)
$$

REFERENCE

1. G. E. Andrews, The Fibonacai Quarterly, Vol. 7, No. 2 (1969), pp. 113-130.

OPERATIONAL FORMULAS FOR UNUSUAL FIBONACCI SERIES
H. W. GOULD

West Virginia University, Morgantown, w.Va. 26506
Operational formulas can play a fascinating role in finding transformations and sums of series. For instance, by using the differential operator $D(=d / d x)$ we can transform

$$
\begin{equation*}
\sum_{k=0}^{\infty} x^{k}=\frac{1}{1-x}, \quad|x|<1 \tag{1}
\end{equation*}
$$

into

$$
\sum_{k=1}^{\infty} k x^{k-1}=\frac{1}{(1-x)^{2}}, \quad|x|<1
$$

