for some nonzero integer U. Finally, $u_0 = u_\rho$, and $u_n | u_0$ for n = 0, 1, ...

Proof: By Lemma 7 and the fact that $\{u_n\}$ is a *k*th order recurrent sequence, the sequence $\{u_n\}$ is periodic with period *M*. Letting ρ be the fundamental period, we now show that the denominator of the generating function H(t)/K(t) must be of the form $1 - t^{\rho}$:

$$\frac{H(t)}{K(t)} = u_0 + u_1 t + \dots + u_{\rho-1} t^{\rho-1} + u_0 t^{\rho} + u_1 t^{\rho+1} + \dots$$

$$= u_0 (1 + t^{\rho} + t^{2\rho} + \dots) + u_1 t (1 + t^{\rho} + t^{2\rho} + \dots) + \dots$$

$$= (u_0 + u_1 t + \dots + u_{\rho-1} t^{\rho-1}) (1 + t^{\rho} + t^{2\rho} + \dots)$$

$$= (u_0 + u_1 t + \dots + u_{\rho-1} t^{\rho-1}) \frac{1}{1 - t^{\rho}}.$$

If H(t) has no linear factors 1 - rt with $r^{\rho} = 1$, then H(t) has no linear factors in common with K(t). This means that no recurrence order for $\{u_n\}$ can be less than ρ .

We see that
$$\rho_i^{e_i} \mid \rho$$
 and $(\rho_i^{e_i}, \rho_j^{e_j}) = 1$ for $1 \le i \le j \le t$, so that
 $u_{\rho} = U u_{\rho_1^{e_1}} u_{\rho_2^{e_2}} \cdots u_{\rho_t^{e_t}}$

for some integer U. For $n \ge 1$, we have $u_{n\rho} = u_{\rho}$ and $u_n | u_{n\rho}$, so that $u_n | u_{\rho}$. That $u_0 = u_{\rho}$, so that $u_n | u_0$ for all n, follows from

 $\begin{aligned} a_{k}u_{0} &= u_{k} - a_{2}u_{k-1} - \cdots - a_{k}u_{1} \\ &= u_{\rho+k} - a_{2}u_{\rho+k-1} - \cdots - a_{k}u_{\rho+1} \\ &= a_{k}u_{\rho}. \end{aligned}$

REFERENCES

- Marshall Hall, "Divisibility Sequences of Third Order," Amer. J. Math., Vol. 58 (1936), pp. 577-584.
- 2. John Riordan, Combinatorial Identities (New York: John Wiley & Sons, 1968).

MINIMUM PERIODS MODULO *n* FOR BERNOULLI NUMBERS

W. HERGET

Technische Universitat, Braunschweig, Fed. Rep. Germany

The Bernoulli numbers B_m may be defined by

$$B_{0} = 1$$

$$B_{m} = \frac{1}{m+1} \sum_{i=0}^{m-1} {m+1 \choose i} B_{i} \quad (m > 0)$$

By the Kummer congruence, we have [2, p. 78 (3.3)],

(2)
$$\sum_{i=0}^{r} (-1)^{i} {r \choose i} \frac{B_{m+i\omega}}{m+i\omega} \equiv 0 \mod p^{re},$$

with w: = $p^{e-1}(p - 1)$, where $r \ge 1$, $e \ge 1$, m > re, p prime such that $p - 1 \nmid m$. With r = 1 we get, in particular

(1)

(3)
$$\frac{B_{m+p^{e-1}(p-1)}}{m+p^{e-1}(p-1)} \equiv \frac{B_{m}}{m} \mod p^{e},$$

where m > e, $p - 1 \nmid m$.

Therefore, the sequence of the Bernoulli numbers is periodic after being reduced modulo n (where n is any integer) in the following sense. A rational a/b with $a, b \in \mathbb{Z}$, gcd(a, b) = 1, may be interpreted as an element of \mathbb{Z}_n , the ring of integers modulo n, if and only if the congruence relation $yb \equiv a \mod n$ has a unique solution $y \in \{0, 1, 2, \ldots, n-1\}$, i.e., if and only if gcd(b, n) = 1. In this case, a/b is said to be *n*-integral.

By the famous von Staudt-Clausen theorem we have for integer i and prime p (cf. [1] and [2]),

$$B_{2i}$$
 p-integral \iff p - 1/2i.

Since $B_0 = 1$, $B_1 = -1/2$ and $B_{2i+1} = 0$ for $i \in \mathbb{N}$, we get

(4)
$$B_m p$$
-integral $\Leftrightarrow p - 1 \not\mid m \lor m = 0 \lor m \in \{3, 5, 7, \ldots\}$

Now let L(n) be the smallest integer greater than 1 with the following property:

$$\exists m_0 \forall k, m \geq m_0$$
:

(5) $(B_k \ n-\text{integral} \land k \equiv m \mod L(n) \Rightarrow B_m \ n-\text{integral} \land B_k \equiv B_m \mod n).$

L(n) is called the *period-length* of the sequence $\{B_k \mod n\}$.

The smallest possible integer m_0 in (5) is then called the *preperiod* of $\{B_k \mod n\}$ and will be denoted by V(n).

If $n = n_1 n_2$, where n_1 , n_2 are coprime, then clearly

$$L(n) = lcm(L(n_1), L(n_2))$$
 and $V(n) = max(V(n_1), V(n_2))$.

Hence, it suffices to discuss the case $n = p^e$, p a prime. We will prove

Theorem 1: (a)
$$L(2^{e}) = L(3^{e}) = 2$$

(b) $V(2^{e}) = V(3^{e}) = 2$
(c) $L(p^{e}) = p^{e}(p - 1)$, where $p > 3$
(d) $V(p^{e}) \le e + 1$.

Proof: If 2 | n or 3 | n, none of the B_{2i} is *n*-integral by (4); since $B_2 = 0$, this proves (a) and $V(2^e)$, $V(3^e) \le 2$. But $V(2^e) = 1$ and $V(3^e) = 1$, respectively, is impossible because $B_1 = -1/2$ is not 2-integral and $B_1 \not\equiv 0 \mod 3^e$. So we get (b) too.

Now let p > 3. From (3) we have, for m > e, $p - 1 \nmid m$, $t \ge 0$,

$$\frac{B_{m+tp}e^{-1}(p-1)}{m+tp^{e-1}(p-1)} \equiv \frac{B_m}{m} \mod p^e; \text{ hence,}$$

(6)
$$k = m + sp^{e}(p-1) \wedge p - 1 \not\{ m \wedge m > e \Rightarrow B_{k} \equiv B_{m} \mod p^{e}.$$

Consequently, $L(p^e) | p^e(p-1)$. On the other hand, we first prove $p-1 | L(p^e)$: suppose $p-1 \nmid L(p^e)$; we may choose $m \geq V(p^e) + L(p^e)$ such that p-1 | m (and therefore $m \neq 0$ and $m \notin \{3, 5, 7, \ldots\}$), hence by (4) B_m is not p-integral. For $k: = m - L(p^e)$, we have $k \equiv m \mod p^e$, $k \geq V(p^e)$ and $p-1 \nmid k$, hence by (4) B_k is p-integral. But this is a contradiction to (5). So $L(p^e) = p^i(p-1)$ where $i \in \{0, \ldots, e\}$. It remains to show i = e. For this, we choose $q \in N$ such that $s: = (qp(p-1) + 2)p^e > V(p^e)$. Because $p^e | s$ and $p - 1 \nmid s$, we have

MINIMUM PERIODS MODULO n FOR BERNOULLI NUMBERS

mod p^e if $k \equiv s \mod p_i (p-1)$. Take $k := s + (p-1)p^i = (2 + (qp^2 + 3)(p-1))p^i = 2 + t(p-1),$

where

$$t: = 2\frac{p^{i} - 1}{p - 1} + (qp^{2} + 3)p^{i} \in N;$$

then by (3) with e = 1 and m = 2,

$$\frac{B_2}{2} \equiv \frac{B_{2+(p-1)}}{2+(p-1)} \equiv \cdots \equiv \frac{B_k}{k} \mod p,$$

where $B_k \equiv 0 \mod p^e$. But, $p^e | s$ and $p^e \not! (p - 1)p^i$ gives $p^e \not! k$ and, therefore, $B_2/2 \equiv 0 \mod p$, contradictory to $B_2 = 1/6$. Hence, i = e holds, and thus

$$L(p^e) = p^e(p-1)$$
 and $V(p^e) \le e+1$

by (6).

Now we may improve this last inequality as follows:

- Theorem 2:
- 1. V(p) = 2 for p prime.
- 2. Let p be a prime, p > 3 and $e \in \{2, 4, 6, ...\}$. Then, (a) $B_e \notin 0 \mod p \land p - 1 \nmid e \Rightarrow V(p^e) = e + 1$.
 - (b) k maximal such that

$$\forall 0 \le i \le k$$
: $(B_{e-2i} \equiv 0 \mod p^{2i+1} \lor p - 1 | e - 2i)$

$$\Rightarrow V(p^e) = e - 1 - 2k.$$

3. Let p be a prime, p > 3 and $e \in \{3, 5, 7, \ldots\}$. Then, (a) $B_{e-1} \neq 0 \mod p^2 \wedge p - 1 \nmid e - 1 \Rightarrow V(p^e) = e$. (b) k maximal such that

$$\forall 0 \le i \le k: \ (B_{e^{-1-2i}} \equiv 0 \mod p^{2i+2} \lor p - 1 | e - 1 - 2i)$$

$$\Rightarrow V(p^e) = e - 2 - 2k.$$

Proof: By Theorem 1(d), we have $V(p) \leq 2$. But V(p) < 2 is impossible since $B_1 = -1/2 \neq 0 \mod p$ and $B_{1+L(p)} = 0$, thus V(p) = 2.

For the proof of the other assertions we note that [4, p. 321, Cor.]:

$$\sum_{i=0}^{r} (-1)^{i} {\binom{p}{i}} B_{m+i\nu} (1 - p^{m-1+i\nu}) \equiv 0 \mod p^{r(\omega+1)-1},$$

where p prime, $p \neq 2$, p - 1 | v, and p^{ω} is the highest power of p contained in v.

Setting r: = 1 and v: = k - m, we get

$$B_m(1 - p^{m-1}) - B_k(1 - p^{k-1}) \equiv 0 \mod p^e,$$

where $p^{e}(p-1) \mid k - m$ and $k \geq m \geq 1$. Because

$$k - 1 \ge m + p^{e}(p - 1) - 1 \ge p^{e}(p - 1) \ge 3^{e} \cdot 2 \ge e,$$

we have, for $k > m \ge 1$, p - 1/m:

(7)
$$k \equiv m \mod p^e (p-1) \Rightarrow B_k - B_m \equiv p^{m-1} B_m \mod p^e.$$

Now it is easy to verify the assertions.

It is not very difficult to derive the following corollary, which gives the value of $V(p^e)$ "explicitly" for regular p (a prime p is said to be *regular* if and only if $B_k \neq 0 \mod p$ for each $k \in \{2, 4, \ldots, p - 3\}$.

546

[Dec.

Cotollary 1: Let p be regular,
$$p > 3$$
 and $e > 0$.
(a) If $2 | e$ then
 $V(p^e) = e + 1 \Leftrightarrow p \nmid e \land p - 1 \nmid e$
 $V(p^e) \leq e - 1 \Leftrightarrow p | e \lor p - 1 | e$
 $V(p^e) \leq e - 3 \Leftrightarrow (p | e \land p - 1 | e - 2) \lor (p - 1 | e \land p^3 | e - 2)$
 $\Leftrightarrow e \equiv 2p \mod p(p - 1) \lor e \equiv 2 - 2p^3 \mod p^3(p - 1)$
 $V(p^e) = e - 5 \Leftrightarrow p = 5 \land e \equiv 252 \mod 500$
 $V(p^e) \geq e - 5$.
(b) If $2 \nmid e$ then
 $V(p^e) = e \Leftrightarrow p^2 \nmid e - 1 \land p - 1 \nmid e - 1$
 $V(p^e) \leq e - 2 \Leftrightarrow p^2 | e - 1 \lor p - 1 | e - 1$
 $V(p^e) \leq e - 4 \Leftrightarrow (p^2 | e - 1 \land p - 1 | e - 3) \lor (p - 1 | e - 1 \land p^4 | e - 3)$
 $\Leftrightarrow e \equiv 2p^2 + 1 \mod p^2(p - 1) \lor e$

$$\equiv -2p^{4} + 3 \mod p^{4}(p - 1)$$

$$V(p^{e}) = e - 6 \iff p = 5 \wedge e \equiv 1253 \mod 2500$$

$$V(p^{e}) > e - 6.$$

For the proof, note that $2/V(p^e)$ holds for e > 1 and that in case of regular p and p - 1/2i, we have

 $B_{2i} \equiv 0 \mod p^e \iff p^e | 2i.$

1978]

The assertions of Corollary 1 with " \Leftarrow " are also valid for any irregular prime p.

By Corollary 1, you may see that only for greater integers p^e , the value $V(p^e)$ differs from e and e+1, respectively. We get

Corollary 2: For prime $p,\ p>3,$ let $e_1=p-1,\ e_2=p,\ e_3=2p,\ e_4=2p^2+1,\ e_5=252,\ e_6=1253.$ Then we have

(a) $V(p^{e_i}) \leq e_i - i, i \in \{1, ..., 4\}.$

If p is regular, then $V(p^{e_i}) = e_i - i$, $i \in \{1, \dots, 4\}$, and there is no smaller power of p such that $V(p^e) = e - i$.

- (b) $V(5^{e_i}) = e_i i$, $i \in \{5, 6\}$, and there is no smaller power of 5 such that $V(5^e) = e i$.
- (c) If p is regular and p > 5, then $V(p^e) \ge e 4$.

For irregular primes, it is naturally somewhat more difficult to derive similar results about the smallest power of p such that $V(p^e) = e - i$, where $i \ge 1$. By Theorem 2, we get

$$B_e \equiv 0 \mod p \wedge 2 | e \Rightarrow V(p^e) \leq e - 1;$$

hence, for each irregular prime p, we have $\mathbb{V}(p^e) \leq e$ - 1 for at least one e such that $e \leq e_1$ = p - 1.

Considering the table of irregular primes in [1] we may compute that $n = 691^{12}$ is the smallest power of an irregular prime such that $V(p^e) = e - 1$.

There are still some open questions:

1. Are there powers $n = p^e$ of some (necessarily irregular) prime p such

THE RANK-VECTOR OF A PARTITION

that $e < e_i$ and $V(p^e) \le e - i$, where $i \in \{2, 3, 4\}$? (By the computational results in [5] we may conclude that this does not happen when p < 30,000.)

2. Is there a power $n = p^e$ of some irregular prime such that

$$V(p^e) \leq e - 5?$$

Final Remark: Professor L. Carlitz and Jack Levine in [3] asked similar questions about Euler numbers and polynomials. Analogous results about the periodicity of the sequence of the Bernoulli polynomials reduced modulo n and the polynomial functions over Z generated by the Bernoulli polynomials will be derived in a later paper.

REFERENCES

- 1. Z. I. Borevic & I. R. Safarevic, *Number Theory*, "Nauka" (Moscow, 1964; English trans. in *Pure and Applied Mathematics*, Vol. 20 [New York: Academic Press, 1966]).
- L. Carlitz, "Bernoulli Numbers," The Fibonacci Quarterly, Vol. 6, No. 3 (1968), pp. 71-85.
- L. Carlitz & J. Levine, "Some Problems Concerning Kummer's Congruences for the Euler Numbers and Polynomials," *Trans. Amer. Math. Soc.*, Vol. 96 (1960), pp. 23-37.
- 4. J. Fresnel, "Nombres de Bernoulli et fonctions L p-adiques," Ann. Inst. Fourier, Grenoble, Vol. 17, No. 2 (1967), pp. 281-333.
- 5. W. Johnson, "Irregular Prime Divisors of the Bernoulli Numbers," Mathematics of Computation, Vol. 28, No. 126 (1974), pp. 652-657.

THE RANK-VECTOR OF A PARTITION

HANSRAJ GUPTA

Panjab University, Chandigarh, India

1. INTRODUCTION

The Ferrars graph of a partition may be regarded as a set of nested right angles of nodes. The depth of a graph is the number of right angles it has. For example, the graph

548