for some nonzero integer U. Finally, $u_{0}=u_{\rho}$, and $u_{n} \mid u_{0}$ for $n=0,1$, .. .
Proof: By Lemma 7 and the fact that $\left\{u_{n}\right\}$ is a kth order recurrent sequence, the sequence $\left\{u_{n}\right\}$ is periodic with period M. Letting ρ be the fundamental period, we now show that the denominator of the generating function $H(t) / K(t)$ must be of the form $1-t^{\rho}$:

$$
\begin{aligned}
\frac{H(t)}{K(t)} & =u_{0}+u_{1} t+\cdots+u_{\rho-1} t^{\rho-1}+u_{0} t^{\rho}+u_{1} t^{\rho+1}+\cdots \\
& =u_{0}\left(1+t^{\rho}+t^{2 \rho}+\cdots\right)+u_{1} t\left(1+t^{\rho}+t^{2 \rho}+\cdots\right)+\cdots \\
& =\left(u_{0}+u_{1} t+\cdots+u_{\rho-1} t^{\rho-1}\right)\left(1+t^{\rho}+t^{2 \rho}+\cdots\right) \\
& =\left(u_{0}+u_{1} t+\cdots+u_{\rho-1} t^{\rho-1}\right) \frac{1}{1-t^{\rho}}
\end{aligned}
$$

If $H(t)$ has no linear factors 1 - $p t$ with $p^{\rho}=1$, then $H(t)$ has no linear factors in common with $K(t)$. This means that no recurrence order for $\left\{u_{n}\right\}$ can be less than ρ.

We see that $\rho_{i}^{e_{i}} \mid \rho$ and $\left(\rho_{i}^{e_{i}}, \rho_{j}^{e_{j}}\right)=1$ for $1 \leq i<j \leq t$, so that

$$
u_{\rho}=U u_{\rho_{1}^{e} e_{1}} u_{\rho_{2}^{e_{2}}} \cdots u_{\rho_{t} \epsilon_{t}}
$$

for some integer U. For $n \geq 1$, we have $u_{n \rho}=u_{\rho}$ and $u_{n} \mid u_{n \rho}$, so that $u_{n} \mid u_{\rho}$. That $u_{0}=u_{\rho}$, so that $u_{n} \mid u_{0}$ for all n, follows from

$$
\begin{aligned}
a_{k} u_{0} & =u_{k}-a_{2} u_{k-1}-\cdots-\alpha_{k} u_{1} \\
& =u_{\rho+k}-a_{2} u_{\rho+k-1}-\cdots-\alpha_{k} u_{\rho+1} \\
& =a_{k} u_{\rho} .
\end{aligned}
$$

REFERENCES

1. Marshall Hall, "Divisibility Sequences of Third Order," Amer. J. Math., Vol. 58 (1936), pp. 577-584.
2. John Riordan, Combinatorial Identities (New York: John Wiley \& Sons, 1968).

*

MINIMUM PERIODS MODULO \boldsymbol{n} FOR BERNOULLI NUMBERS

W. HERGET

Technische Universitat, Braunschweig, Fed. Rep. Germany
The Bernoulli numbers B_{m} may be defined by

$$
\begin{align*}
& B_{0}=1 \\
& B_{m}=\frac{1}{m+1} \sum_{i=0}^{m-1}\binom{m+1}{i} B_{i} \quad(m>0) . \tag{1}
\end{align*}
$$

By the Kummer congruence, we have [2, p. 78 (3.3)],

$$
\begin{equation*}
\sum_{i=0}^{r}(-1)^{i}\binom{r}{i} \frac{B_{m+i w}}{m+i \omega} \equiv 0 \bmod p^{r e} \tag{2}
\end{equation*}
$$

with $w:=p^{e-1}(p-1)$, where $r \geq 1, e \geq 1, m>r e, p$ prime such that $p-1 \nmid m$. With $r=1$ we get, in particular

$$
\begin{equation*}
\frac{B_{m}+p^{e-1}(p-1)}{m+p^{e-1}(p-1)} \equiv \frac{B_{m}}{m} \quad \bmod p^{e} \tag{3}
\end{equation*}
$$

where $m>e, p-1 \nmid m$.
Therefore, the sequence of the Bernoulli numbers is periodic after being reduced modulo n (where n is any integer) in the following sense. A rational a / b with $a, b \in Z, \operatorname{gcd}(a, b)=1$, may be interpreted as an element of Z_{n}, the ring of integers modulo n, if. and only if the congruence relation $y b \equiv a$ $\bmod n$ has a unique solution $y \varepsilon\{0,1,2, \ldots, n-1\}$, i.e., if and only if $\operatorname{gcd}(b, n)=1$. In this case, a / b is said to be n-integrat.

By the famous von Staudt-Clausen theorem we have for integer i and prime p (cf. [1] and [2]),

$$
B_{2 i} p \text {-integral } \Longleftrightarrow p-1 \nmid 2 i
$$

Since $B_{0}=1, B_{1}=-1 / 2$ and $B_{2 i+1}=0$ for $i \varepsilon N$, we get

$$
\begin{equation*}
B_{m} p \text {-integral } \Longleftrightarrow p-1 \nmid m \vee m=0 \vee m \varepsilon\{3,5,7, \ldots\} \tag{4}
\end{equation*}
$$

Now let $L(n)$ be the smallest integer greater than 1 with the following property:

$$
\begin{align*}
& \exists m_{0} \forall k, m \geq m_{0}: \\
& \left(B_{k} n \text {-integral } \wedge k \equiv m \bmod L(n) \Rightarrow B_{m} n \text {-integral } \wedge B_{k} \equiv B_{m} \bmod n\right) . \tag{5}
\end{align*}
$$

$L(n)$ is called the period-length of the sequence $\left\{B_{k} \bmod n\right\}$.
The smallest possible integer m_{0} in (5) is then called the preperiod of $\left\{B_{k} \bmod n\right\}$ and will be denoted by $V(n)$.

If $n=n_{1} n_{2}$, where n_{1}, n_{2} are coprime, then clearly

$$
L(n)=\operatorname{lcm}\left(L\left(n_{1}\right), L\left(n_{2}\right)\right) \quad \text { and } \quad V(n)=\max \left(V\left(n_{1}\right), V\left(n_{2}\right)\right) .
$$

Hence, it suffices to discuss the case $n=p^{e}, p$ a prime. We will prove
Theorem 1: (a) $L\left(2^{e}\right)=L\left(3^{e}\right)=2$
(b) $V\left(2^{e}\right)=V\left(3^{e}\right)=2$
(c) $L\left(p^{e}\right)=p^{e}(p-1)$, where $p>3$
(d) $V\left(p^{e}\right) \leq e+1$.

Proof: If $2 \mid n$ or $3 \mid n$, none of the $B_{2 i}$ is n-integral by (4); since B_{2}
$=0$, this proves (a) and $V\left(2^{e}\right), V\left(3^{e}\right) \leq 2$. But $V\left(2^{e}\right)=1$ and $V\left(3^{e}\right)=1$, respectively, is impossible because $B_{1}=-1 / 2$ is not 2 -integral and $B_{1} \not \equiv 0$ mod 3^{e}. So we get (b) too.

Now let $p>3$. From (3) we have, for $m>e, p-1 \nmid m, t \geq 0$,

$$
\begin{align*}
& \frac{B_{m}+t p^{e-1}(p-1)}{m+t p^{e-1}(p-1)} \equiv \frac{B_{m}}{m} \bmod p^{e} ; \text { hence, } \\
& k=m+s p^{e}(p-1) \wedge p-1 \nmid m \wedge m>e \Rightarrow B_{k} \equiv B_{m} \bmod p^{e} .
\end{align*}
$$

Consequently, $L\left(p^{e}\right) \mid p^{e}(p-1)$. On the other hand, we first prove $p-1 \mid L\left(p^{e}\right)$: suppose $p-1 \nmid L\left(p^{e}\right)$; we may choose $m \geq V\left(p^{e}\right)+L\left(p^{e}\right)$ such that $p-1 \mid m$ (and therefore $m \neq 0$ and $m \notin\{3,5,7, \ldots\}$), hence by (4) B_{m} is not p-integral. For $k:=m-L\left(p^{e}\right)$, we have $k \equiv m \bmod p^{e}, k \geq V\left(p^{e}\right)$ and $p-1 \nmid k$, hence by (4) B_{k} is p-integral. But this is a contradiction to (5). So $L\left(p^{e}\right)=p^{i}(p-1)$ where $i \varepsilon\{0, \ldots, e\}$. It remains to show $i=e$. For this, we choose $q \varepsilon N$ such that $s:=(q p(p-1)+2) p^{e}>V\left(p^{e}\right)$. Because $p^{e} \mid s$ and $p-1 \nmid s$, we have
$B_{s} \equiv 0 \bmod p^{e}\left[2, \mathrm{p} .78\right.$, Theorem 5]. Now suppose $i<e$. Then, $B_{k} \equiv B_{s} \equiv 0$ $\bmod p^{e}$ if $k \equiv s \bmod p_{i}(p-1)$. Take

$$
k:=s+(p-1) p^{i}=\left(2+\left(q p^{2}+3\right)(p-1)\right) p^{i}=2+t(p-1),
$$

where

$$
t:=2 \frac{p^{i}-1}{p-1}+\left(q p^{2}+3\right) p^{i} \varepsilon N
$$

then by (3) with $e=1$ and $m=2$,

$$
\frac{B_{2}}{2} \equiv \frac{B_{2+(p-1)}}{2+(p-1)} \equiv \cdots \equiv \frac{B_{k}}{k} \bmod p,
$$

where $B_{k} \equiv 0 \bmod p^{e}$. But, $p^{e} \mid s$ and $p^{e} \nmid(p-1) p^{i}$ gives $p^{e} \nmid k$ and, therefore, $B_{2} / 2 \equiv 0 \bmod p$, contradictory to $B_{2}=1 / 6$. Hence, $i=e$ holds, and thus

$$
L\left(p^{e}\right)=p^{e}(p-1) \quad \text { and } \quad V\left(p^{e}\right) \leq e+1
$$

by (6).
Now we may improve this last inequality as follows:
Theorem 2:

1. $V(p)=2$ for p prime.
2. Let p be a prime, $p>3$ and $e \varepsilon\{2,4,6, \ldots\}$. Then,
(a) $B_{e} \not \equiv 0 \bmod p \Lambda p-1 X e \Rightarrow V\left(p^{e}\right)=e+1$.
(b) k maximal such that

$$
\begin{aligned}
\forall 0 \leq i \leq k: \quad\left(B_{e-2 i}\right. & \left.\equiv 0 \bmod p^{2 i+1} \vee p-1 \mid e-2 i\right) \\
& \Rightarrow V\left(p^{e}\right)=e-1-2 k .
\end{aligned}
$$

3. Let p be a prime, $p>3$ and $e \varepsilon\{3,5,7, \ldots\}$. Then,
(a) $B_{e-1} \not \equiv 0 \bmod p^{2} \wedge p-1 \nmid e-1 \Rightarrow V\left(p^{e}\right)=e$.
(b) k maximal such that

$$
\begin{aligned}
\forall 0 \leq i \leq k:\left(B_{e-1-2 i}\right. & \left.\equiv 0 \bmod p^{2 i+2} \vee p-1 \mid e-1-2 i\right) \\
& \Rightarrow V\left(p^{e}\right)=e-2-2 k
\end{aligned}
$$

Proof: By Theorem 1(d), we have $V(p) \leq 2$. But $V(p)<2$ is impossible since $B_{1}=-1 / 2 \not \equiv 0 \bmod p$ and $B_{1+L}(p)=0$, thus $V(p)=2$.

For the proof of the other assertions we note that [4, p. 321, Cor.]:

$$
\sum_{i=0}^{r}(-1)^{i}\binom{p}{i} B_{m+i \nu}\left(1-p^{m-1+i \nu}\right) \equiv 0 \bmod p^{r(\omega+1)-1},
$$

where p prime, $p \neq 2, p-1 \mid \nu$, and p^{ω} is the highest power of p contained in ν.

Setting $r:=1$ and $\nu:=k-m$, we get

$$
B_{m}\left(1-p^{m-1}\right)-B_{k}\left(1-p^{k-1}\right) \equiv 0 \bmod p^{e}
$$

where $p^{e}(p-1) \mid k-m$ and $k \geq m \geq 1$. Because

$$
k-1 \geq m+p^{e}(p-1)-1 \geq p^{e}(p-1) \geq 3^{e} \cdot 2 \geq e,
$$

we have, for $k>m \geq 1, p-1 \nmid m$:

$$
\begin{equation*}
k \equiv m \bmod p^{e}(p-1) \Rightarrow B_{k}-B_{m} \equiv p^{m-1} B_{m} \bmod p^{e} . \tag{7}
\end{equation*}
$$

Now it is easy to verify the assertions.
It is not very difficult to derive the following corollary, which gives the value of $V\left(p^{e}\right)$ "explicitly" for regular p (a prime p is said to be reguZar if and only if $B_{k} \not \equiv 0 \bmod p$ for each $k \varepsilon\{2,4, \ldots, p-3\}$.

Corollary 1: Let p be regular, $p>3$ and $e>0$.
(a) If $2 \mid e$ then

$$
\begin{aligned}
& V\left(p^{e}\right)=e+1 \Longleftrightarrow p \nmid e \wedge p-1 \nmid e \\
& V\left(p^{e}\right) \leq e-1 \Longleftrightarrow p|e \vee p-1| e \\
& V\left(p^{e}\right) \leq e-3 \Longleftrightarrow(p|e \wedge p-1| e-2) \vee\left(p-1\left|e \wedge p^{3}\right| e-2\right) \\
& \Longleftrightarrow e \equiv 2 p \bmod p(p-1) \vee e \equiv 2-2 p^{3} \bmod p^{3}(p-1) \\
& V\left(p^{e}\right)=e-5 \Longleftrightarrow p=5 \wedge e \equiv 252 \bmod 500 \\
& V\left(p^{e}\right) \geq e-5 . \\
& \text { (b) } \begin{aligned}
& I f 2 \nmid e \text { then } \\
& V\left(p^{e}\right)=e \Longleftrightarrow p^{2} \nmid e-1 \Lambda p-1 \nmid e-1 \\
& V\left(p^{e}\right) \leq e-2 \Longleftrightarrow p^{2}|e-1 \vee p-1| e-1 \\
& V\left(p^{e}\right) \leq e-4 \Longleftrightarrow\left(p^{2}|e-1 \wedge p-1| e-3\right) \vee\left(p-1\left|e-1 \Lambda p^{4}\right| e-3\right) \\
& \Longleftrightarrow e \equiv 2 p^{2}+1 \bmod p^{2}(p-1) \vee e \\
& \equiv-2 p^{4}+3 \bmod p^{4}(p-1) \\
& V\left(p^{e}\right)=e-6 \Longleftrightarrow p=5 \Lambda e \equiv 1253 \bmod 2500 \\
& V\left(p^{e}\right) \geq e-6 .
\end{aligned}
\end{aligned}
$$

For the proof, note that $2 \nmid V^{\prime}\left(p^{e}\right)$ holds for $e>1$ and that in case of regular p and $p-1 \nmid 2 i$, we have

$$
B_{2 i} \equiv 0 \bmod p^{e} \Longleftrightarrow p^{e} \mid 2 i
$$

The assertions of Corollary 1 with " \Leftarrow " are also valid for any irregular prime p.

By Corollary 1, you may see that only for greater integers p^{e}, the value $V\left(p^{e}\right)$ differs from e and $e+1$, respectively. We get

Corollary 2: For prime $p, p>3$, let $e_{1}=p-1, e_{2}=p, e_{3}=2 p, e_{4}=$ $2 p^{2}+1, e_{5}=252, e_{6}=1253$. Then we have
(a) $V\left(p^{e_{i}}\right) \leq e_{i}-i, i \varepsilon\{1, \ldots, 4\}$.

If p is regular, then $V\left(p^{e_{i}}\right)=e_{i}-i$, $i \varepsilon\{1, \ldots, 4\}$, and there is no smaller power of p such that $V\left(p^{e}\right)=e-i$.
(b) $V\left(5^{e_{i}}\right)=e_{i}-i$, $i \varepsilon\{5,6\}$, and there is no smaller power of 5 such that $V\left(5^{e}\right)=e-i$.
(c) If p is regular and $p>5$, then $V\left(p^{e}\right) \geq e-4$.

For irregular primes, it is naturally somewhat more difficult to derive similar results about the smallest power of p such that $V\left(p^{e}\right)=e-i$, where $i \geq 1$. By Theorem 2, we get

$$
B_{e} \equiv 0 \bmod p \wedge 2 \mid e \Rightarrow V\left(p^{e}\right) \leq e-1 ;
$$

hence, for each irregular prime p, we have $V\left(p^{e}\right) \leq e-1$ for at least one e such that $e \leq e_{1}=p-1$.

Considering the table of irregular primes in [1] we may compute that $n=$ 691^{12} is the smallest power of an irregular prime such that $V\left(p^{e}\right)=e-1$.

There are still some open questions:

1. Are there powers $n=p^{e}$ of some (necessarily irregular) prime p such
that $e<e_{i}$ and $V\left(p^{e}\right) \leq e-i$, where $i \varepsilon\{2,3,4\}$? (By the computational results in [5] we may conclude that this does not happen when $p<30,000$.)
2. Is there a power $n=p^{e}$ of some irregular prime such that

$$
V\left(p^{e}\right) \leq e-5 ?
$$

Final Remark: Professor L. Carlitz and Jack Levine in [3] asked similar questions about Euler numbers and polynomials. Analogous results about the periodicity of the sequence of the Bernoulli polynomials reduced modulo n and the polynomial functions over Z generated by the Bernoulli polynomials will be derived in a later paper.

REFERENCES

1. Z. I. Borevic \& I. R. Safarevic, Number Theory, "Nauka" (Moscow, 1964; English trans. in Pure and Applied Mathematics, Vol. 20 [New York: Academic Press, 1966]).
2. L. Carlitz, "Bernoulli Numbers," The Fibonacci Quarterly, Vol. 6, No. 3 (1968), pp. 71-85.
3. L. Carlitz \& J. Levine, 'Some Problems Concerning Kummer's Congruences for the Euler Numbers and Polynomials," Trans. Amer. Math. Soc., Vo1. 96 (1960), pp. 23-37.
4. J. Fresnel, "Nombres de Bernoulli et fonctions L p-adiques," Ann. Inst. Fourier, Grenoble, Vol. 17, No. 2 (1967), pp. 281-333.
5. W. Johnson, "Irregular Prime Divisors of the Bernoulli Numbers," Mathematics of Computation, Vo1. 28, No. 126 (1974), pp. 652-657.

THE RANK-VECTOR OF A PARTITION
HANSRAJ GUPTA
Panjab University, Chandigarh, India

1. INTRODUCTION

The Ferrars graph of a partition may be regarded as a set of nested right angles of nodes. The depth of a graph is the number of right angles it has. For example, the graph

