of all of the X_{i}. Let $E_{k}=$ the expected number of tosses to observe k heads in a row. Let $Z=X_{1}+\cdots+X_{Y}$. Then,

$$
\begin{aligned}
E_{k} & =E(Y+Z)=E(Y)+E(Z) \\
& =E(Y)+E(Z \mid Y=1) \operatorname{Pr}(Y=1)+E(Z \mid Y=2) \operatorname{Pr}(Y=2)+\cdots \\
& =E(Y)+\sum_{n=1}^{\infty} E(Z \mid Y=n) \operatorname{Pr}(Y=n)=E(Y)+\sum_{n=1}^{\infty} n E\left(X_{1}\right) \operatorname{Pr}(Y=n) \\
& =E(Y)+E\left(X_{1}\right) E(Y) .
\end{aligned}
$$

But $E(Y)=$ the expected number of tosses to observe a head $=1 / p$, and $E\left(X_{1}\right)=$ E_{k-1}. Thus $E_{k}=1 / p+(1 / p) E_{k-1}$, which yields (3).

REFERENCE

1. L. E. Dickson, History of the Theory of Numbers, Vol. I (1919; Chelsea reprint 1966).
2. W. Feller, Introduction to Probability Theory and Its Applications, Vol. I (New York: John Wiley \& Sons, 1968).

STRONG DIVISIBILITY SEQUENCES WITH NONZERO INITIAL TERM

CLARK KIMBERLING
University of Evansville, Evansville, IN 47702
In 1936, Marshall Hall [1] introduced the notion of a kth order linear divisibility sequence as a sequence of rational integers $u_{0}, u_{1}, \ldots, u_{n}, \ldots$ satisfying a linear recurrence relation

$$
\begin{equation*}
u_{n+k}=a_{1} u_{n+k-1}+\cdots+a_{k} u_{n} \tag{1}
\end{equation*}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are rational integers and $u_{m} \mid u_{n}$ whenever $m \mid n$. Some divisibility sequences satisfy a stronger divisibility property, expressible in terms of greatest common divisors as follows:

$$
\left(u_{m}, u_{n}\right)=u_{(m, n)}
$$

for all positive integers m and n. We call such a sequence a strong divisibility sequence. An example is the Fibonacci sequence $0,1,1,2,3,5,8, \ldots$.

It is well known that for any positive integer m, a linear recurrence sequence $\left\{u_{n}\right\}$ is periodic modulo m. That is, there exists a positive integer M depending on m and $a_{1}, a_{2}, \ldots, a_{k}$ such that

$$
\begin{aligned}
& \text { (2) } u_{n+M} \equiv u_{n}(\bmod m) \\
& \text { for all } n \geq n_{0}\left[m, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right] \text {; in particular, } n_{0}=0 \text { if }\left(a_{k}, m\right)=1 \text {. } \\
& \text { Hall }[1] \text { proved that a linear divisibility sequence }\left\{u_{n}\right\} \text { with } u_{0} \neq 0 \text { is } \\
& \text { degenerate in the sense that the totality of primes dividing the terms of } \\
& \text { \{un\} is finite. One should expect a stronger conclusion for a linear strong } \\
& \text { divisibility sequence having } u_{0} \neq 0 \text {. The purpose of this note is to prove } \\
& \text { that such a sequence must be, in the strictest sense, periodic. That is, } \\
& \text { there must exist a positive integer } M \text { depending on } \alpha_{1}, \alpha_{2}, \ldots, a_{k} \text { such that } \\
& \qquad u_{n+M}=u_{n}, \quad n=0,1, \ldots .
\end{aligned}
$$

Suppose $\left\{u_{n}\right\}$ is a k th order linear strong divisibility sequence. In terms of a generating function for $\left\{u_{n}\right\}$, we write

$$
\begin{equation*}
u_{0}+u_{1} t+u_{2} t^{2}+\cdots=\frac{H(t)}{K(t)}=\frac{H(t)}{\left(1-x_{1} t\right)\left(1-x_{2} t\right) \cdots\left(1-x_{k} t\right)}, \tag{3}
\end{equation*}
$$

where $H(t)$ and $K(t)$ are polynomials with integer coefficients. Let $q=x_{1} x_{2}$ $\ldots x_{k}\left(=\alpha_{k}\right)$. We assume that $q \neq 0$.

Lemma 1: $u_{m} \mid q^{m} u_{0}$ for $m=1,2, \ldots$.
Proof: The Oth m-multisection of (3) (e.g., Riordan [2]) gives

$$
u_{j m}=M_{1} u_{(j-1) m}-M_{2} u_{(j-2) m}+\cdots+(-1)^{k-1} M_{k} u_{0},
$$

where the M_{i} are integers. Since $u_{m} \mid u_{c m}$ for $c=1,2, \ldots$, we have

$$
u_{m} \mid(-1)^{k+1} M_{k} u_{0}
$$

and this finishes the proof, because $M_{k}=q^{m}$.
Another proof of Lemma 1, depending on the periodicities (2), may be found in Hall [1].

Henceforth, we assume $u_{0} \neq 0$. Let $p_{1}, p_{2}, \ldots, p_{v}$ be all the prime divisors of $q u_{0}$, so that we may write

$$
q=p_{1}^{s_{1}} p_{2}^{s_{2}} \ldots p_{v}^{s_{v}} \text { and } u_{0}=p_{1}^{i_{1,0}} p_{2}^{i_{2,0}} \ldots p_{v}^{i_{v, 0}} .
$$

Then, since $u_{m} \mid q^{m} u_{0}$ for $m=0,1,2, \ldots$, we can write

$$
u_{m}=p_{1}^{i_{1, m}} p_{2}^{i_{2, m}} \ldots p_{v}^{i_{v, m}}, m=0,1,2, \ldots
$$

Consider the set $\sigma_{\ell}=\left\{i_{\ell, 1}, i_{\ell, 2}, \ldots\right\}, \ell=1,2, \ldots, v$. Let $\left|\sigma_{\ell}\right|$ be the number of elements in σ_{ℓ}, with $\left|\sigma_{\ell}\right|=\infty$ if σ_{ℓ} is an infinite set. Define $\alpha_{\ell}(j)$ for $j=1,2$, ... inductively as follows:

$$
\begin{aligned}
a_{\ell}(1)= & 1 \\
a_{\ell}(2)= & \left\{\begin{array}{l}
1 \text { if }\left|\sigma_{\ell}\right|=1 \\
\text { least } w \text { such that } i_{\ell, w} \neq i_{\ell, 1}, \text { if }\left|\sigma_{\ell}\right|>1
\end{array}\right. \\
& \vdots \\
a_{\ell}(j)= & \left\{\begin{array}{l}
a_{\ell}(j-1) \text { if }\left|\sigma_{\ell}\right| \leq j-1 \\
1 \text { east } w \text { such that } i_{\ell, w} \notin\left\{i_{\ell, a_{\ell}(r)}: 1 \leq r<j-1\right\} \\
\text { if }\left|\sigma_{\ell}\right|>j-1 .
\end{array}\right.
\end{aligned}
$$

Thus, either the sequence $\alpha_{\ell}(1), \alpha_{\ell}(2), \alpha_{\ell}(3), \ldots$ is strictly increasing and unbounded, or else it is strictly increasing up to some point and constant thereafter, or else it is the constant sequence $1,1, \ldots$.

Lemma 2: Suppose $1 \leq \ell<v$. Then $a_{\ell}(j) \mid a_{\ell}(j+1)$ for $j=1,2, \ldots$.
Proof: To simplify notation, let $\alpha=a_{\ell}(j), b=a_{\ell}(j+1)$, and $c=(a, b)$. Without loss we assume $\alpha \neq b$. Clearly $c \leq \alpha$. Suppose $1 \leq c<\alpha$. Then $i_{\ell, c}=$ $i_{\ell, a_{\ell}(r)}$ for some $r<j$, so that $i_{\ell, c} \neq i_{\ell, a}$ and $i_{\ell, c} \neq i_{\ell, b}$. From $u_{c}=$ (u_{a}, u_{b}) follows $i_{\ell, c}=\min \left\{i_{\ell, a}, i_{\ell, b}\right\}$. This contradiction shows that $c=a$, as required.

Lemma 3: Suppose $1 \leq \ell<v$ and $j \geq 1$. If $1 \leq w \leq a_{\ell}(j)=a$, then

$$
i_{\ell, w} \leq i_{\ell, a}
$$

Proof: If $1 \leq w \leq a$, then $i_{\ell, w}=i_{\ell, a_{\ell}(r)}$. for some $r<j$. Since $a_{\ell}(r) \mid a$, by Lemma 2, we have $u_{a_{\ell}(r)} \mid u_{a}$, so that $i_{\ell, a_{\ell}(r)} \leq i_{\ell, a}$.

Lemma 4: Suppose $1 \leq \ell \leq v$ and $j \geq 1$. If $1 \leq w \leq a_{\ell}(j)=\alpha$, then

$$
i_{\ell,(w, a)}=i_{\ell, w} .
$$

Proof: $\left(u_{w}, u_{a}\right)=u_{(w, a)}$, so $\min \left\{i_{\ell, w}, i_{\ell, a}\right\}=i_{\ell,(w, a)}$. Now $i_{\ell, w} \leq i_{\ell, a}$, by Lemma 3 , so $i_{\ell,(w, a)}=i_{\ell, w}$.

Lemma 5: Suppose $1 \leq \ell \leq v$ and $j \geq 2$. Suppose $a=a_{\ell}(j) \geq 2$ and b is a positive integer. Then

$$
\left(i_{\ell, b a+1}, i_{\ell, b a+2}, \ldots, i_{\ell, b a+a-1}\right)=\left(i_{\ell, 1}, i_{\ell, 2}, \ldots, i_{\ell, a-1}\right) .
$$

Proof: Suppose $1 \leq w \leq a-1$. Then $\left(u_{b a+w}, u_{a}\right)=u_{(b a+w, a)}=u_{(w, a)}$, so $\min \left\{i_{\ell, b a+w}, i_{\ell, a}\right\}=i_{\ell,(w, a)}=i_{\ell, w}$ by Lemma 4. Since $i_{\ell, w}<i_{\ell, a}$ by definition of a, we conclude $i_{\ell, b a+w}=i_{\ell, w}$.

Lemma 6: Suppose $1 \leq \ell \leq v$ and $2 \leq\left|\sigma_{\ell}\right|<\infty$. Let $L=a_{\ell}\left(\left|\sigma_{\ell}\right|\right)$, and let b be a positive integer. Then

$$
\left(i_{\ell, b L+1}, i_{\ell, b L+2} \ldots, i_{\ell, 2 b L-1}\right)=\left(i_{\ell, 1}, i_{\ell, 2}, \ldots, i_{\ell, b L-1}\right) .
$$

Proof: By Lemma 5, we already know

$$
\begin{aligned}
\left(i_{\ell, 1}, \ldots, i_{\ell, L-1}\right) & =\left(i_{\ell, L+1}, \ldots, i_{\ell, 2 L-1}\right) \\
& =\left(i_{\ell, 2 L+1}, \ldots, i_{\ell, 3 L-1}\right) \\
& \vdots \\
& =\left(i_{\ell,(b-1) L+1}, \ldots, i_{\ell, b L-1}\right),
\end{aligned}
$$

so it remains only to see that $i_{\ell, L}=i_{\ell, 2 L}=\cdots=i_{\ell,(b-1) L}$. For $1 \leq c \leq$ $b-1$, we have $\left(u_{c L}, u_{L}\right)=u_{L}$, so that $\min \left\{i_{\ell, c L}, i_{\ell, L}\right\}=i_{\ell, L}$. Since $i_{\ell, c L}$ $<i_{\ell, L}$, we conclude $i_{\ell, c L}=i_{\ell, L}$.

Lemma 7: There exists a positive integer M such that $u_{M+j}=u_{j}$ for $j=$ 1, 2, ..., k.

Proof: For $1 \leq \ell \leq v$, if $\left|\sigma_{l}\right|=\infty$, choose j_{l} so large that $\alpha_{\ell}\left(j_{\ell}\right)>k$, and if $\left|\sigma_{\ell}\right|<\infty$, let $\bar{a}_{\ell}\left(j_{\ell}\right)=a_{\ell}\left(\left|\sigma_{\ell}\right|\right)$. Let M be the least common multiple of the numbers $\alpha_{1}\left(j_{1}\right), \alpha_{2}\left(j_{2}\right), \ldots, \alpha_{v}\left(j_{v}\right), 2 k$. (We include $2 k$ to ensure that $M>k$ in case $\left|\sigma_{\ell}\right|<\infty$ for all l.)

Now, by Lemma 5, for each ℓ with $\left|\sigma_{\ell}\right|=\infty$, we have

$$
\left(i_{\ell, M+1}, \ldots, i_{\ell, M+k}\right)=\left(i_{\ell, 1}, \ldots, i_{\ell, k}\right)
$$

This same equation holds, by Lemma 6 , for each ℓ with $2 \leq\left|\sigma_{\ell}\right|<\infty$, and clearly holds also for $\sigma_{\ell}=1$. Therefore, for $1 \leq j \leq k$, we have $i_{\ell, M+j}=i_{\ell, j}$ for $1 \leq \ell \leq v$, so that $u_{M+j}=u_{j}$ for $1 \leq j \leq k$.

Theorem: Suppose $\left\{u_{n}\right\}, n=0,1, \ldots$, is a kth order strong divisibility sequence with $u_{0} \neq 0$. Then the sequence $\left\{u_{n}\right\}$ is periodic and has a generating function of the form $H(t) /\left(1-t^{\rho}\right)$, where ρ is the fundamental period of $\left\{u_{n}\right\}$. If $H(t)$ has no linear factor of the form $1-r t$, where $r^{\circ}=1$, then ρ is the least possible recurrence order of $\left\{u_{n}\right\}$. If

$$
\rho=\rho_{1}^{e_{1}} \rho_{2}^{e_{2}} \ldots \rho_{t}^{e_{t}}
$$

if the prime factorization of ρ, then

$$
u_{\rho}=U u_{\rho_{1}^{e_{1}}} u_{\rho_{2}^{e_{2}}} \quad \cdots u_{\rho_{t}^{e_{t}}}
$$

for some nonzero integer U. Finally, $u_{0}=u_{\rho}$, and $u_{n} \mid u_{0}$ for $n=0,1$, .. .
Proof: By Lemma 7 and the fact that $\left\{u_{n}\right\}$ is a kth order recurrent sequence, the sequence $\left\{u_{n}\right\}$ is periodic with period M. Letting ρ be the fundamental period, we now show that the denominator of the generating function $H(t) / K(t)$ must be of the form $1-t^{\rho}$:

$$
\begin{aligned}
\frac{H(t)}{K(t)} & =u_{0}+u_{1} t+\cdots+u_{\rho-1} t^{\rho-1}+u_{0} t^{\rho}+u_{1} t^{\rho+1}+\cdots \\
& =u_{0}\left(1+t^{\rho}+t^{2 \rho}+\cdots\right)+u_{1} t\left(1+t^{\rho}+t^{2 \rho}+\cdots\right)+\cdots \\
& =\left(u_{0}+u_{1} t+\cdots+u_{\rho-1} t^{\rho-1}\right)\left(1+t^{\rho}+t^{2 \rho}+\cdots\right) \\
& =\left(u_{0}+u_{1} t+\cdots+u_{\rho-1} t^{\rho-1}\right) \frac{1}{1-t^{\rho}}
\end{aligned}
$$

If $H(t)$ has no linear factors 1 - $p t$ with $p^{\rho}=1$, then $H(t)$ has no linear factors in common with $K(t)$. This means that no recurrence order for $\left\{u_{n}\right\}$ can be less than ρ.

We see that $\rho_{i}^{e_{i}} \mid \rho$ and $\left(\rho_{i}^{e_{i}}, \rho_{j}^{e_{j}}\right)=1$ for $1 \leq i<j \leq t$, so that

$$
u_{\rho}=U u_{\rho_{1}^{e} e_{1}} u_{\rho_{2}^{e_{2}}} \cdots u_{\rho_{t} \epsilon_{t}}
$$

for some integer U. For $n \geq 1$, we have $u_{n \rho}=u_{\rho}$ and $u_{n} \mid u_{n \rho}$, so that $u_{n} \mid u_{\rho}$. That $u_{0}=u_{\rho}$, so that $u_{n} \mid u_{0}$ for all n, follows from

$$
\begin{aligned}
a_{k} u_{0} & =u_{k}-a_{2} u_{k-1}-\cdots-\alpha_{k} u_{1} \\
& =u_{\rho+k}-a_{2} u_{\rho+k-1}-\cdots-\alpha_{k} u_{\rho+1} \\
& =a_{k} u_{\rho} .
\end{aligned}
$$

REFERENCES

1. Marshall Hall, "Divisibility Sequences of Third Order," Amer. J. Math., Vol. 58 (1936), pp. 577-584.
2. John Riordan, Combinatorial Identities (New York: John Wiley \& Sons, 1968).

*

MINIMUM PERIODS MODULO \boldsymbol{n} FOR BERNOULLI NUMBERS

W. HERGET

Technische Universitat, Braunschweig, Fed. Rep. Germany
The Bernoulli numbers B_{m} may be defined by

$$
\begin{align*}
& B_{0}=1 \\
& B_{m}=\frac{1}{m+1} \sum_{i=0}^{m-1}\binom{m+1}{i} B_{i} \quad(m>0) . \tag{1}
\end{align*}
$$

By the Kummer congruence, we have [2, p. 78 (3.3)],

$$
\begin{equation*}
\sum_{i=0}^{r}(-1)^{i}\binom{r}{i} \frac{B_{m+i w}}{m+i \omega} \equiv 0 \bmod p^{r e} \tag{2}
\end{equation*}
$$

with $w:=p^{e-1}(p-1)$, where $r \geq 1, e \geq 1, m>r e, p$ prime such that $p-1 \nmid m$. With $r=1$ we get, in particular

