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even. This is true when p = qu where m is a positive integer and g is odd

- +
and 2" ' < » < 2™, Now we conclude that (p ;P> is odd and (p-+p 1) s al-
ternately odd and even for » =0, 1, 2, ..., n - 1 where p = 2mq and 2771 <
n< 2™,

Remank 1: Care must be taken not to apply the results of Theorem 2 directly
in order to obtain the results of Theorem 5. Similarly, the properties of
the derivatives and the integrals of a BMS should not be applied directly to

Hin (7.3).
Remask 2: The authors earnestly hope that the reader will be able to find
further applications of the binary sequences of BMSs.
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1. INTRODUCTION
In [1] the writer discussed the number of compositions
(1.1) n=a +a, + " +aq

in positive (or nonnegative) integers subject to the restriction
(1.2) a; #a;y1 (=1, 2, ..., k- 1).

In [2] he considered the number of compositions (1.1) in nonnegative integers
such that

(1.3) a; £ a;., (modm) (2 =1, 2, ..., k-1),

where m is a fixed positive integer.
In the present paper we consider the number of multipartite compositions

(]_,4) nj=ajl+aj2+"'+ajk (J":l, 2, eo s t)
in nonnegative Qjs subject to

(1.5) a, +a;,; (=1,2, ..., k-1)

or

(1.6) a; 7a;,; (modm (£ =1, 2, vuu, k= 1)
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where a; denotes the vector (ali, a
integer.

Let c¢(m,k) denote the number of solutions of (1.4) and (1.5) and let
f(n,k) denote the number of solutions of (1.4) and (1.6), where n=:(nl, n
n4). We show in particular that

9pd e ap;) and m is a fixed positive

PR

(1.7) Zx:‘xsz x?fZe(n,k)zk
n X

5(1 Y G

i1 -2 -z e (- a))

and
UL PR
(1.8) > aiial xl* Y f(n,k)zk
n X
. -1
. w x i x? 2t
Lyveens ig=0 L+ altaxyz con it A

where

A= 2

(I -a2D@ -z =+ (1 -a) )

For simplicity, proofs are given for the case ¢ = 2, but the method ap-
plies to the general case.

SECTION 2

To simplify the notation, we consider the case t = 2 of (l.4); however,
the method applies equally well to the general case. Thus, let c¢(n,p,k) de-
note the number of solutions of

n=a, ta, + "+ oa
(2.1)
p=0>by +b, + " + Dby

in nonnegative a;, b; such that

7
(2.2) (agsby) # (@pi15D41) (z =1, 2, ..., k- 1)
let ¢(n,p) denote the corresponding enumerant when k is unrestricted. For
given nonnegative a, b, let cg,,5 (n, P, k) denote the number of solutions of
(2.1) and (2.2) with a; = a, by = b

Clearly

e(n,p,k) = Z Cap (DK
a,b

It is convenient to define c¢(n,p,k) and ¢, p (n,p,k), kK = 0, as follows:

1 (n=p=0)
(2.4) c(n,p,0) =

0 (otherwise)
and
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(1

(2.4)! Cap (Msp,0) = 1
0

(otherwi

nm=p=a=>b=0)

se).

It follows at once from the definitions that

(2.5) C’a,b (nspak) =

2: Cp, s (1

(r,s) # (a,b)

Note that (2.5) holds for

(2.6) Cap (Xsy,5k) =
and
(2.7) O (wsy,u,v) =

It follows from (2.4)

(2'8) Ca’b (ZJC,ZJ,O) =
and
(2.9) O, (x,y,u,v) =

In the next place, by

1

Ca,b (J;sy 9k)

k

7,
a

!

2

p=0
L
2 Cap (@YK
,b=0

—awp - bk -1 (k> 1).

= 1 except when n = p =a =5b = 0.
Generating functions CaJ,(x,y,k) and @k(x,y,u,v) are defined by

Cqp (Msp,k

b

that

{l (a=b =
.0 (otherwi
1.

(2.5) and (2.6), we have for k > 1,

> &y

n,p=0 (r,s) # (a,

X

aybz xnyp{z Cr,s (n,p,k - D-cap (n,p,k = 1)

n,p=0

aybz xnyp{@(”ap,k - ]-) - ca,b (”,P’k - 1)}-

“yb{C(x,y,k - 1) - Ca,b (x,y,k - l)} (k > 1),

=z
Hence, mp=0

(2.10) Cap (@y,k) =

where -

(2.11) Cla,y,k) = D, Coap (@,y,k) =

a,b=0

Thus, (2.10) yields

a, 0

so that, by (2.7), for k > 1,

(2.12) o, (x,y,u,v) =

1

Yx"y? (k> 0)
yuv? (k> 0).

0)

se)

I} (n-a,p-b,k—l)

r,s

b)

r,s

©

Z e(n,p,k)x"y?.

n,p =0

D Cap @oysk)u™? = Clyk - 1) D (@w)® ()P
b=

a,b=0

o

- Z F,p (@y,k = 1) (xu)? (yv)®

11
“au 1o v k-

a,b =0

1(90,24»1,1) - (Dk_l(xsy5xuayv)'

[Oct.

}
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Iteration gives

1 1
q)k (x,y,u,v) = 1 < 71 W@k_l(x;y’lsl)

1 1
- " ;’Dk_z(x,y,l,l) +0, _, @,y,xu,y’v)
I -2%u 1 - yv

(k > 2),
and generally
s Jj-1
-1
<Dk (‘r:y’uﬂj) =Z ( ) ; @k_j(x,y,l,l)
i=1 (1 - z%u) (1 - yv)
+ (—1)3®k_s(x,y,xsu,ysv) (k > s).
In particular, for s = k - 1, this becomes
k-1 Ji-1
(2.13) 0, @ysus0) = 9 L —0, _(@.y,1.1)
=1 (1 - z%w) (1 - yPv)
k-1 - k-1
+ (LT, (oLysak - tu,yt ).
We have
- 1
= b =
Oy (@aysus0) = D D o (s DEYPUVY = o
n,p=0 a,b
and (2.13) becomes
k Jj-1
_\ -1
(2.14) 0, (,ysusv) = O @y, 1,1 (k2 1),

i1 (1l -ztwQ - yiv)

In particular, for v = v = 1, (2.14) reduces to

K ;
(2.15) b, @uys1,1) + Y L)

o, (woy,l,1) =8, .
: k- kK,
Fa-aeha-gh ’

It follows from (2.15) that

3 (-1 =7
(2.16) Clxsy,z) = 41 + : o
;,Zl (I -2 -y

where C(x,y,2) is defined by (2.11).
Returning to (2.14), we have

© © _ J"lyj oo
D0, oy susv)k = 2: ( %) — 2:®k(x,y,l,l)zk,
k=1 i=1 (1 = 2% (1 - yov)i=0

and therefore ) .
= (=1)7 57

S0 -2wa -y
LS (-1)7z7
gzu—xﬁu—y%

(2.17) Z@k (x,y,u,v)zk =
k=1
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Note that the L.H.S. of (2.16) is

©

(2.16)' Z c(n,p,k)x"yPak

n,py k=0
the L.H.S. of (2.17) is

©

.17’ Z Cap (D sK)xyPu’ vhzk,
n,psa,b,k=0

Also, it can be shown (compare [1, §5]) that

©

(2.18) Z e(m,p)x"y?

n,p =0

©

=<1 _Z 2T @) + P =) = @A - ay) (7T
i=1 (1 -2 YA -22)a -y Ha -y

for [.r[ <4, ]y[ < A, where Azé—.

SECTION 3

We shall now discuss the problem of enumerating the multipartite compo-
sitions that satisfy (1.6). We again take ¢=2. Let f(n,p,k) denote the num-
ber of solutions of

n=a ta * - +a
(3.1)

P =by b, s+ by
in nonnegative q,, b, such that
(3'2) (as’bs) :Tf (a3+]_’bs+l) (mOd m) (S =1, 25 LI ) k - 1)'

Let f;, ; (msp>k), for 0 < 2 <m, 0 < j < m, denote the number of solutions of
(3.1) and (3.2) that also satisfy

(3.3) a, =i, b, =4 (mod m).

Finally, let f; . (n,p,k,a,b) denote the number of solutions of (3.1), (3.2),
and (3.3) w1tha1—a, by = b. Thus f, . (n,p,k,a,b) =0 unless a = 7, b = J
(mod m) .

It is convenient to extend the definitions to include the case k=0. We
define

(3(-14) f(”apso) = 67106;70’ f;,J(VZ,p,O) = 6i06j0f(7’l,p,0)

an

(3.5) fi 3 (nsps(]’a:b) = éaosbﬂfi J (n P> 0)'

Thus f(n,p,0) = 0 unless n =p = Ofl,(n,p0)=0 nlessn=p=i=j=0,
(npO,ab)—Ounlessn=p=7,=,j b=0

© It follows from the deflnltlon that

(3.6) F(n,p,k) = Z Fi 5 (0psk)

i,5=0
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m=1 n p
= Z fi ; (nspsksasb) n >0, p >0, k> 0).

2,j=0 a=0 b=0
Moreover, we have the recurrence

m=1

n p
fi’j (n’p’k’a’b) = Z Z Zfi',j' (n,p,k,a,b)

i1, 51=0 a=05b=0
3" # (<, 5)

[k >0, a=Z, b =g (mod m)].

This reduces- to
m-1
(3-7) fl,J (n;p :k,a’b) = Z fl

7, d"=0
@,d") # i, 9

y(n-a,p-b, k-1

g

[k >0, a=%, b=7J (mod m].

Corresponding to the enumerants, we define a number of generating func-
tions:

©

F'L',,j (x’y’z) = Z fi,j (nQP’k)Ccnyka
ns>psk=0

F(x,y,z) = Z fn,p,k)x"yPzk
n,p,k=0

o

Fy 5 (x,y,3,a,b) = Z f;; (apsk,a,b)ay?zk.
n,psk=0

Since

fo,0 (mopslsasb) = 8,48, [a = b =0 (mod m)]

f0,0 (n:p’()’asb) = Snadpb6no6p0’

it follows that

Fo,o (:y>25asD) = 840840 + %P2 + %P2 D, Fi ;(x,y,2)
(i,45)#(0,0)

[a =b =0 (mod m)].
Summing over g and b, we get

(3.8) FO,()(-'X?,‘Z];Z)
2 32

=1 + + Z Fi,j (x,y,52)
(1 =™ -yMm (1 - 2™ - y™ @,4)#0,0)

On the other hand, for (<,j) # (0,1) and a = Z, b = j (mod m), it follows
from (3.7) that

Py i (@y,z,a,0) = }: al, Pk Z I i n-a,p-=-5b, k-1)
n.ook @ha") = Gg) ’

-a. b -
%y }d i (@sy,3) .

3
GG #(i. )

I
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Hence, summing over g and b, we get

xylz

(3.9) F, o @sy,a) = Fy i (@:452)
’ (I -2™Q - y™arine g
[(Z,5) # (0,0)].

Since
Fil,j' (xyy,z) = F(-%‘,y,z) - Fi,j (x’yyz):

@437 # (2, 4)
(3.8) and (3.9) become

(l + & )FD,O(x,y,z)
(1 - xm)(l - ym)

3 g

=1+ + F(x,y,2)
(I =x™)( - y™ 1 -2z™ma=-y™
and
Ld
<1 + xy’z )Fi,j @,y ,2)
(I -x™m@ -yM
xtyiz

= F(x,y,2) (Z,3) # (0,0),
(1 -2 -y"

respectively. Hence,

2
_ m — m
Fo o@sy,2) =1 + d-z )(lz y7) F(x,y,2)
1+
(L =2 - ym
(3.10) o [(Z,) # (0,0)].
x4z
1 - m 1 - m
F, oo (@y,2) = ¢ & )(. 17 Fz,y,2)
’ 1+ x4y iz
(L =™ -y"
Summing over the m? equations in (3.10), we get
xtyiz
S G-ana -y
(3.11) 1 - :i: e F(x,y,3) = 1.
i,/=0 1 4 x'ylz

(I =-=zma-y"
For brevity, put

A= 2
(1 _ xn1)(1 _ ym>
so that (3.11) becomes
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m=-1 i.,d
(3.12) Y —x—Lﬁ'—A—— Fx,y,a) = 1.
i,5-0 1 + xtyiy
Let
m-1 Lo
(3.13) B, () =E, Oux,y) = [T (1 + 27yin);

i,J=0
clearly F, (A) is a polynomial in A of degree m?2. By logarithmic differentia-
tion
)\Pm’(k) _ m=1 2iyi
Pp(A) i,7=0 1 + xiyjk

Thus (3.12) becomes

B, (\) N
(3.14) F(x,Y,28) = 7=+ A= ,
where
(3.15) Qm(k) =P, (A) - PI(MN).

For example, for m = 2,

P,(N) =1+ (L +2)(+PA+ (@ +y+ 20y +xy + axy?))\?
+ay(l +x)(1 + y)>\3 + xzyZX“
Q,N) =1 - (x+y+ 20y +x?y +axy®)A?

- 2xy(l + x) (1 + y)A3 - 3x%.

SECTION 4

As in [2], the limiting case, m = « of f(n,p,k), is closely related to
c(n,p,k). We assume |x| < 1, |y| < 1, so that

3

A =
Q=™ -y™
Thus, (3.12) becomes

> Z (m—>oo),

©

(4.1) 1 - 2: __gﬁﬂié_f_ F*(x,y,3) =1,
Z,j=0 1 + x*yJz
where
F*(z,y,z) = lim F(x,y,z).
Now

f: ﬂciz!jz _ i Z (_l)s—lxisyjszs
ivje=0 1+ xfydz 70 s=1

= 2: (-1)° 1 58 .
s=1 (I =25 -y
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Hence, we may replace (4.1) by

©

(4.2) 1+ Y (1) 27 F*(o,y,s) = 1.

Comparing (4.2) with (2.16) and (2.16)', it follows at once that
(4.3) F*(nsp,k) = c(,p,k),
where f*(n,p,k) is the limiting case (m = ©) of f(n,p,k); (4.3) is of course
to be expected from the definitionms.
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1. INTRODUCTION

In a recent note, in [3], Worster conjectured, on the basis of computer
calculations, that for each positive integer k there exists an odd polynomial
Gox -1 (x) of degree 2k - 1 such that, for every zero a of the Bessel function
Jy (x)

/sz-l @) [J @) 1 dz = [a]; (a)12F.
0

The conjecture was extended and proved in [1] the extended result being: for
each positive k there exists an odd polynomial §(x),with nonnegative integer
coefficients and of degree k or k - 1 according to whether k is odd or even,
such that for every zero a of J (x)

(1.1) fQ(x) [, ) 1%de = (k - D) ![ad, @]1%.
0

If the factor (k - 1)! on the right-hand side is omitted, then the coeffi-
cients in @(x) are no longer integers. In addition, [l] also contained the
following generalization due to Hammersley: if F,, F;, G,, and G, are four
functions of x such that
dr, dr,
bam T @

and Fo(a) = GO(O) = 0, so that Fl(O) =0,

=G Fy,

then there exists @(x) depending only on G,» G, and K with the property



