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INTRODUCTION

Cauchy gave a necessary condition for the convergence of an infinite
series,

S a);
k=1
namely, that the sequence (a(n)) converges to zero as 7 tends to infinity.
Olivier proved a variation of this theorem, which has, in a sense, gen-

erated more interest: Let (a(n)) be a monotonic nonincreasing sequence of
positive numbers, tending to zero, such that
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exists, then lim n *a(n) = 0.
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For one thing, Olivier's theorem allows for extensions in several direc-

tions [4]. Niven and Zuckerman, for instance, have proved the following
theorem [5]:

Theorem 1: Let (a(ﬂ)) be a monotonic nonincreasing sequence of positive num-
bers. Then

[An]
(1) 1im Z a(k)
e k=n+1

exists for each A > 1, if and only if lim n *a(n) exists.

N+ oo
Clearly, Niven and Zuckerman's condition for the convergence of
(n cam))

is weaker than that of Olivier. On the other hand, they have given a neces-
sary and sufficient condition for the convergence of
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In this paper, Olivier's theorem will be extended further in this same
direction. We consider a sequence of positive numbers (@(n)) (as yet unspe-
cified) and a monotonic nonincreasing sequence of positive numbers (a(n)),
such that
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exists for every A > 1. We will show that lin1ZLé%%%£L exists.
N+

193



194 MORE IN THE THEORY OF SEQUENCES [Oct.

When @(n) =1, n =1, 2, 3, ..., the problem reduces to the case con-
sidered by Niven and Zuckerman. But more generally, as we will prove, (#(n))
can be any regularly varying sequence, i.e., any sequence of positive numbers
which satisfies

(2) %{239%%%§%l-= Y(A) for every A > 0,
where Y(A) = Ap, where the index p is real.

We summarize this result in Theorem 2.

Theorem 2: Let (#(n)) be a regularly varying sequence and let (a(n)) be a
monotonic nonincreasing sequence of positive numbers. Then
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exists for each A > 1, if and only if l1im E—Lgiﬁl-exists.
nre  B(n)
Proog: Let
1 [an]
HQ) = Lim #,() = lin W}(;;;dk).

For each integer m > A, let n = [m/A] in H,()\) and let » = m - [nA].
Since 0 =m - m/A A <m-n-<*X, we have m > nx = [n)]. Also,

OLr=m-[(nx] <m- (mx -1) <m- (m/x-1) =X + 1.

Since
(UrAl = n) ~a(nr]) ( (UnA] - n) *a(m)
B (1) 2 B2 = 7o)
and
[nA] + » < nh + A+ 1 m+ A+ 1 < m+ A +1
Al = n—mh -1-n—WA-1Dx~-1-n—m-Xx-1-m/\’
we have
mea@m) _mca(m ., 8x) [7A] + > . Blm/A]
5o - B B =T = I Tgim
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“m-=-A-=-1-m/) @ (m)

Hence, by (2),

) Lim sup P00 < 2 Aot mQ) - (/0"
We assert that

. A(Am]) - A(Qun])
lin D) =2,

where A > 1, 4 > 0, and

[An]

A([Mn]) = Z a(k).
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It is sufficient to show
1 [Aun]
He gty & @t =0,
k=(lun])+1
since
[Aun]

A([Apn]) - A([un]) _ 1
B (un]) =By Gy 2

Clearly, by (2) and (4),

a(k).
k= (Alunl) +1
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so our assertion is proved.

)

Therefore, we have
(5 HOAw) = HO)WP + H(w),
since

_ A - Aunl) | 9CunD) |, ACLunl) - A(n)
Hn (1) = b)) IO 1O) :

Interchanging Yy with A in (5) and manipulating the equations simultane-
ously, we have, if p # 0, H(u)/pu°® - 1 = H(AM)/X\° - 1 = 4, A a constant, which
implies
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If p =0, then H(Au) = H(A) + Hu). Since H(+) is monotonic increasing,
H(+) has a point of continuity and it is not hard to show H(+) is continuous
on [1,»]. Hence H(+) is of the form

(7 H(\) = H'(1) log A.
Since
. neam) , (U] - n) _ . nea)
#OD < 1im =560 7 = =D 1im ey

we have

'y = 1im 2 g ncaln)
H1Q) = dim 5 = e Ty

On the other hand, as a consequence of (4), we have
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L AGD = AR L . (= (/A1) . nea()
B () 2 lim sup " P

Therefore, from (6) and (7),

' R 2D = o1s n +an)
SR A VIV & N TN
Hence,
.onecam) _ o,
Hn =50y ~#'W-

We now prove the converse.

Definition: Let f(x) be a real valued, measurable function which satisties
1im LU2) _ ye
2 > oo f(:}c)

for every A > 0. Then f(x) is a regularly varying function of index p.
Every regularly varying function f(x) of. index p can be written as

8 F@) = 5@
where L(x) is regularly varying of index 0 (slowly varying). (See [2].)

Lemma 1: Let (#(n)) be a regularly varying sequence of index o, then the
function f(x) defined by

flx) = 8(lzD)
is a regularly varying function of index p.

Lemma 2: 1f L(x) is a slowly varying function, then for every [a,b], 0 < a <

b < o, the relation

. L)
T =1

holds uniformly with respect to x € [a,b].

Lemma 2, known as the Uniform Convergence Theorem for slowly varying
functions, has been proved by several persons. A nice proof is given in [1]
by Bojanic and Seneta. Lemma 1 is proved by the author in [3].

By hypothesis,

keaCk) _

1lim = (.

PRI 9]
Also, by (8), @#(k) can be written as
gy = K°L(k),
where L(k) is slowly varying. Therefore, (a(k)) can be written as
ak) = C(RYKPTIL(K),
where %32 c(k)y = C.

Consequently, for n sufficiently large,
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[An] [An]
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where € > 0. " n<kslinl k=n+l
Clearly,
min LK) = min éﬁklﬁl
n<ksian) LOD ey L)
and
s !
max LK) = max L&)
nsk<iin] L) 1<y L)
By Lemmas 1 and 2, we have ]
. . L(k'n) _ T L(k'n)
LR T - b TR e TG
Therefore,
[An] [An] [An] [An]

(C - €) ko—l . 1 N ” 1 (C + ¢) -1
- = lim —— Y a(k) = 1im a(k) = ~~—— kPTL,
ne k§+1 nre 9 () /) e Q(n)kjé;l ) ne k=2;+1

On the other hand,
[An] p p
EP-1 A= Dn £ op 40
k=n+1 e
log A if p =20
Hence, letting € - 0, we have
A AP
[Anl g cn DI 040

1
lim —— a(k) = o
nee §(7) k;n:i,l l ¢ log A if p=0

and the converse is proved.

I am particularly grateful to Professor Ranko Bojanic for his sugges-—
tions and comments.
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