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INTRODUCTION 

Cauchy gave a necessary condition for the convergence of an infinite 
series, 

k = l 

namely, that the sequence (a(n)) converges to zero as n tends to infinity. 
Olivier proved a variation of this theorem, which has, in a sense, gen-

erated more interest: Let (a(n)) be a monotonic nonincreasing sequence of 
positive numbers, tending to zero, such that 

lim ) a(k) 

exists, then lim n • a(n) = 0. 
n -> co 

For one thing, OlivierTs theorem allows for extensions in several direc-
tions [4]. Niven and Zuckerman, for instance, have proved the following 
theorem [5]: 

Tk&OHQjn 7: Let (a(n)) be a monotonic nonincreasing sequence of positive num-
bers. Then 

[An] 
(1) lim Yj a{^ 

* + ~ k=n+l 

exists for each X > 1, if and only if lim n • a(n) exists. 
n ->- co 

Clearly, Niven and Zuckerman's condition for the convergence of 

(n • a(n)) 

is weaker than that of Olivier. On the other hand, they have given a neces-
sary and sufficient condition for the convergence of 

In this paper, Olivierss theorem will be extended further in this same 
direction. We consider a sequence of positive numbers (0(n)) (as yet unspe-
cified) and a monotonic nonincreasing sequence of positive numbers (a(n)), 
such that 

[An] 
lim ¥?^Y ^ a(k) 

YI ° a(YI) exists for every A > 1. We will show that lim — n , N — exists. 
«+oo 0(n) 
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When 0(n) = 1, n = 1, 2, 3, . .., the problem reduces to the case con-
sidered by Niven and Zuckerman. But more generally, as we will prove, (0(n)) 
can be any regularly varying sequence, i.e., any sequence of positive numbers 
which satisfies 

(2) limTC
0(JAn]) = i(j(A) for every A > 0, 

where ip(A) = X , where the index p is real. 
We summarize this result in Theorem 2. 

Th^0K.<im 1: Let (0(n)) be a regularly varying sequence and let (a(n)) be a 
monotonic nonincreasing sequence of positive numbers. Then 

(3) l i m ^ - £ > ( * : ) =H(X) 
k= n + 1 

Yl • CL (YI) 

exis t s for each A > 1, if and only if lim —TTT~\— e x i s t s . 
n+oo 0(n) 

P/LOOfj: L e t 
-, [ A n ] 

E(X) = 11m Hn(\) = llm-z-^r V a(k) . 
k = n + 1 

For each i n t e g e r m > A, l e t n = [m/X] i n Hn(X) and l e t r = m - [nX]. 
Since 0 = m - 777/A • A <L 777 - n • A, we have m >_ nX = [nX]. A l so , 

Since 

and 

we have 

0 <. r = m - [nA] < m - (nX - 1) < m - (m/X - 1) = A + 1 . 

n n x v ( [nA] - n ) • a([nX]) ( [nA] - n) • q(777) 
"nKA) ~ 0 ( n ) - 0 ( n ) 

[nA] + p nA + A + 1 777 + A + 1 ^ 77? + A + 1 
[nA] - n ~ ~ n A - l - n ~ (777/A - 1)A - l - n — 7 7 7 - A - l - TT?/A' 

77? •aim) _ m * a(m) 0 ( n ) [nA] + v 0[TT?/A] 
0 ( n ) " 0 ( n ) " 0(77?) - [nA] - n - / / * C A ; " 0(77?) 

?n + A + 1 # # 0 ( [ ^ / X ] ) 
777 - A - 1 - 777/A ^ ; 0(777) 

Hence, by ( 2 ) , 

(4) i i i : 8 u p 2 - g i < _ A _ . f f ( x ) . ( 1 A ) P . 

We assert that 

,. ^([Ayn]) - A([\in]) „ , , , 
lim 7T~F7 7"\ ~ ti{A) , 
n - » 0([]in]) 

where A > 1, y > 0, and 
[ A n ] 

A([Xn]) = J2 a(k)' 
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It is sufficient to show 

[Ann] 
l i m 77-77 TV 7 , aCk) = 0 , 
«+«, 0([\in]) ^ K } 

k = (A[yn]) + l 

A([Xyn}) - A([]in]) 
0 ( [ y n ] ) aiv 

Clearly, by (2) and (4), 

[Apn] 

k= ( A [ y n ] ) + i 

[Aim] 
1 

l i m 
V u yn i) 

k = {\[\in]) + l 

L A l J n j 

[A[yw]]a([A[yw]]) 
-IH^Mf • ( [ A ] + 2 ) : - = 0 , 

»~ 0 ( [ y n ] ) [X[y«]] 0([X[yn]]) 
so our assertion is proved. 

Therefore, we have 

(5) H(X]i) = ff(A)yp + H(]i), ' 

since 

i4([Xyiw]) - A(lim]) . g([yw]) , A([]m}) - 4(«) 
"V y; 0([yn]) 0(K) + 0(n) 

Interchanging y with A in (5) and manipulating the equations simultane-
ously, we have, if p / 0, H(\i)/\iQ - 1 = H(X)/XP - 1 = A, A a constant, which 
implies 

# ' ( 1 ) = l i m , = l i m n — • l i m —; — = A • p , 
A - i + A - 1 x + i + A p - 1 A + i + A - 1 

( 6 ) H(X) = ^ ^ - ( A p - 1 ) . 

If p = 0, then #(Ay) = H(X) + H(\i). Since #(•) is monotonic increasing, 
#(•) has a point of continuity and it is not hard to show H(°) is continuous 
on [I,00]. Hence H(m) is of the form 

(7) H(X) = Hr(l) log A. 

Since 

i / / ^ ^ 1 • n °aM . ([An] - n) ., . - n • a(n) ff(A) ̂  U". ~0W n = (A - 1) lim -J^~, 
we have 

#'(1) = lim -, = lim — M / \ 
AH-I A - 1 „-» 0(n) 

On the other hand, as a consequence of (4), we have 
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H(X) A(n) - A([n/X]) (n - [n/X]) r n - a(n) 
—T — = lim ^7—r > lim sup • /* / x • 

Therefore, from (6) and (7), 

um\ i- ff(A) ,. n • a (re) H (1) = lim sup — = lim sup ^ , N . 
A*I* Ap(i - l/A) " — 0<«) 

Hence, 

lim ^, s = H ' (1) . 
rc+oo 0(n) 

We now prove the converse. 

V2.fisLn<LtsLon: Let f(x) be a real valued, measurable function which satisties 

i. /(far) ,p lim *„. x = A 

for every X > 0. Then /(x) is a regularly varying function of index p. 
Every regularly varying function f(x) of.index p can be written as 

(8) f(x) = XpL(x) 

where L(x) is regularly varying of index 0 (slowly varying). (See [2].) 

L&mma 1 •' Let (0(n)) be a regularly varying sequence of index p, then the 
function f(x) defined by 

fix) = 0([x}) 

is a regularly varying function of index p. 

Lmmci 1: If L(x) is a slowly varying function, then for every [a,b], 0 < a < 
b < °°, the relation 

L(Xx) 
lim L(x) 

holds uniformly with respect to x e [a,b]. 

Lemma 2, known as the Uniform Convergence Theorem for slowly varying 
functions, has been proved by several persons. A nice proof is given in [1] 
by Bojanic and Seneta. Lemma 1 is proved by the author in [3], 

By hypothesis, 

-M™ k *a(fc) _ r 1 l m /* /-? \ — C/. 

Also, by (8), 0(k) can be written as 

0(fc) = fcP£(fc), 

where L(/c) is slowly varying. Therefore, (a(k)) can be written as 

a(/0 = C{k)kQ~lL{k) , 

where lim C(fc) = C. 

Consequently, for n sufficiently large, 
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s (C-e) L(k) 

k-
[Xnl 

where e > 0. 
C l e a r l y , 

and 

n<k<[Xn) L^n)
k=n + 1 E^> 

L(k) . L(kfn) = mm 
>-<k<[Xn] L(n^> i<k'<\ L ( n ) 

L(k) L(k'n) 
max T, N = max —— —-

By Lemmas 1 and 2, we have 

lim m m , , = 1 = lim max — 

Therefore, 

(C - E) '-' ^ ^ 

= n + l fc = n + 1 fc= n + 1 

£(n) * 

[An] 

r E a(/0 z 
fe= n + 1 

r i k=n + l 

On the other hand, 

p 

Hence, letting e -> 0, we have 

[An] 1 . p p 

D ^-H ( "o } i f p ^ ° 
fc=n+l I _ ^M 

1 l o g A i f p = 0 

1 [^ ) £ O l ^ J J ,f p j t Q 
l i m 777-v T ^ #(&) n+00 0Oz) Z-/ P 

fe= n + i I C l o g A i f p = 0 

and the converse is proved. 

I am particularly grateful to Professor Ranko Bojanic for his sugges-
tions and comments. 
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