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ABSTRACT 

20059 

The purpose of this paper is to show that a certain automorphism has or-
der six when restricted to compositions considered as plane trees. 

Part I is devoted to the proof of this and in Part II some applications 
are given. In particular, a duality between various Fibonacci families is 
discussed which also yields some interesting new settings for the Fibonacci 
families. Some open questions are mentioned in Part III. 

The author would like to thank both Bertrand Harper and Robert Donaghey 
for helpful conversations. 

PART I 

It is well known that plane trees with n edges are equinumerous with 
binary plane trees with n+ 1 end points. This correspondence was given in a 
paper by DeBruijn and Morselt [1] in 1967. A modification yields an automor-
phism on the set of plane trees. Throughout this paper, plane trees will be 
called trees. 

We illustrate this automorphism, which we will denote A9 as follows: 

, T. 

Straightening out the dotted lines yields another plane tree: 

, A(T). 

A2(T), A3(T)9 is at most 
Since both T and A(T) have the same number of edges it follows that the num-
ber of distinct trees in the sequence T3 A (T), 

c =—l— (2n) 
Ly) - + 1 \n) n 

since there are Cn trees with n edges. 
We give another illustration in Figure 1-1. This particular example is 

not chosen at random; in fact, it illustrates the cycle of six. In general, 
it is extremely difficult, given a tree T9 to predict the order n such that 
An(T) = T. Some work has been done on this problem (see [2]) but the central 
problem remains untouched. This paper represents the first interesting spe-
cial case. 
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A2(T) 

X 

T = A6(T) 

9 9 

A3(T) 

o AS{T) 

Ah(T) 

FIGURE 1-1 

Any composition of a number can easily be represented by a plane tree as 
follows. If n = n1 + n2 + ••• + nk, then the corresponding tree has only the 
root as a branch point and the lengths of the branches from the root, going 
left to right, are n1, n2s ..., nk. For example, 

2 + 2 + 3 + 1^-

ThzotKim: If T represents a composition, then A3 (T) also represents a compo-
sition and AB (T) = T. 

?K00{ We will just trace through the six steps. The illustration is vital 
for following this proof 
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Let T be a composition. Since the only branch point is the root, we see 
that as we are constructing A (T) , all of the edges up from a vertex are ter-
minal except the rightmost. 

Note next that A 1 is defined as is A but from the right. For instance 

9 P 

This shows that this 'terminal-edges-except-for-the-rightmost-edge! condition 
precisely yields the set A(T) where T is a composition. 

Next we have that A*(T) consists of all trees such that all ^dges except 
the leftmost up from a vertex are terminal. 

From here it is not hard to see that A (T) is again a composition. So, 
A (T) must again be a composition and we only need show A (T) = T. 

Let us define A (T) as the dual composition of T. 
S u p p o s e 71 = 71-^+ 7l2 + 

A(T) has 
+nk is the composition that T represents. Then, 

2± edges at the root 

i2 edges at height 2 

nk edges at height k. 

We construct A (T) by first taking a path of length nx starting at the root 
and going up taking the rightmost branch at each node. 

Eliminate these n1 edges and repeat the procedure to get n2. If elimi-
nation disconnects the tree then operate on the upper component first. Con-
tinue this procedure to find paths of lengths n3, nh , ... . 

When computing A3 (T) , these paths each overlap by 1. 
We wish to define a matrix D that will specify the A3 automorphism ex-

actly. We illustrate this before giving the precise definition: 

^<__>n = 2 + 2 + 3.+ l<- DT = \ 

1 1 0 0 0 \ 
0 1 1 0 0 
0 0 1 1 1 
0 0 0 0 1 / 

<- 2 
+ • 2 

<- 3 
«- 1 

A3(T) i s given by t h e column sums read in r e v e r s e , h e r e 2 + 1 + 2 + 2 + 1 . 
Let n = n x + n2 + • • • + nk be a compos i t ion T. Then, Z ^ i s a / c x n - Z c + l 

m a t r i x w i t h 
i - 1 i 

u,7" 

0 o t h e r w i s e . 

Note t h a t 
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'1 1 0 0; 

o i o/6 
D(2 + 1 + 2 + 2 + 1) = | O 1/1 O 

0/6 i i 
( O O O l , 

which is D(T) reflected about the 45°  line passing through the middle of the 
matrix. This situation holds in general. 

Repeating this reflection twice yields the original matrix and thus 

AS(T) = A3(A3(T)) = T, 

concluding the proof of the theorem. 

PART II: SOME APPLICATIONS TO FIBONACCI NUMBERS 

The following results were contained in an exercise in a set of lecture 
notes of R. Stanley. 

The following sets are enumerated by the Fibonacci numbers. 

A. All compositions of n where all parts are >_ 2. 
B. All compositions of n where all parts are equal to 1 or 2. 
C. All compositions of n into odd parts. 

These assertions are all easily verified by induction. We will add the 
following: 

D. All compositions, n = n1 + n2 + ••• + 2̂fe+i where all n2• = 1. 
E. All compositions, n - n-± + n2 + ••• + n2k + i where all rij - 1 for 

k + 1 < j 5 2k. 
F. All compositions, n = n1 + n2 + • • • + nm where n1 >_ n^ for 2 _< j < £, 

(-\)n = (-l)m, and 2n1 + m >_ n + 2. 

Of these, F is perhaps the most interesting. It also seems to be less triv-
ial to prove directly. 

For the sake of brevity, we will ignore A(T) and A2 (T) in this discus-
sion and go directly by way of the matrices from T to A3 (T) leaving A(T) and 
A2(T) to the diligent reader. 

VKopo&AJtLovi 1: A and B are dual Fibonacci families (except for a subscript 
shift). 

Let n = n1 + n2 + • • • + nk where all n >_ 2. Then we obtain 

11.. .1 0 

11...1 

0 '11...1 

11.. 

The column sums are either 1 or 2 with the first and last column sums always 
equal to 1. Obviously the compositions of n with first and last parts equal 
to 1 are bijective with all compositions of ft - 2. Thus, A and B are essen-
tially dual families, one enumerated by {Fn} and the other by {Fn_2}> 
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We next want to consider the dual of family C. We have 

n = nx + n2 + ••• + nk where each nj is odd. 

For instance 

3 + 1 + 5 + 1 + 1 + 7 

The column sums can be larger than 1 only in columns 1, 3, 5, 7, ... . 
This is family D. This time C and D are exact duals and we have proved: 

Vsiopo&Ajtlon 2: C and D are dual Fibonacci families. 

ytlopo&AJtlovi 3: E and F are dual Fibonacci families. 

Since D and E are equinumerous, E is enumerated by the Fibonacci num-
bers. We need only show duality. Again we start by looking at an example: 

l l = n = l + l + 3 + 2 + l + l + l so t h a t k = 3 , 2k + 1 = 7 

' l 1 0 0 0 
0 1 0 0 0 
0 1 1 1 0 
0 0 0 1 1 
0 0 0 0 1 
0 0 0 0 1 
0 0 0 0 1 

The last column sum is at least k + 1, and this must be as large as any 
other column sum because each of n19 n25 . . . , nk + 1 can contribute at most 1 
to each column. 

Note that the matrix D has 2k + 1 rows and n - 2k columns. Thus if the 
dual composition is 

n = n\ + n\ + • • • + n*. 

we have n~. _> k + 1 = — « h 1, or 

PART I I I 

To conclude, we mention some open problems and include some related re-
marks . 
1. For a tree T, what is the smallest positive integer k such that Ak(T) = 

T1 Even such simple questions as what information about T will guaran-
tee that k is even are unsolved. 

2. How many compositions of n with 

n = n1 + n2 + • • • + nk have n1 _> ni for all i? 

A related question would specify also that n and k have the same parity. 
The first few values are shown in the following table. 
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10 

n-k with (-1) 

with (-l)n"k = -1 

1 

1 

i °  

2 

1 

1 

3 

2 

1 

5 

3 

2 

8 

5 

3 

14 

8 

6 

24 

13 

11 

43 

22 

21 

77 

39 

38 

130 

65 

65 

An answer to this question would be of interest in studying partitions. 
If we specify that all end points of a tree be at height 2 then another 
Fibonacci family is obtained. For instance, for n - 6, we obtain the 
following five trees: 

If we specify height 3 instead of height 2, we obtain the Tribonacci 
numbers 1, 1, 1, 2, 4, 7, 13, 24, ... . If we specify height 3 or less 
we obtain the sequence 1, 2, 5, 13, 34, 89, ... = {̂ 2nfn=o • If w e knew 
more about Question 1, we could do more with each of these families. 
Each of these statements translates into statements about permutations 
achievable with push down stacks. See Knuth [4] for definitions and 
explanation. 

How many permutations are achievable with a push down stack that holds 
two elements where each time the stack is empty two elements are put in 
(or the run ends)? The answer is Fn and is equivalent to our first 
remark in this subsection. 
What alterations can we make to get reasonably natural settings for the 
Lucas numbers, the Tribonacci numbers, and the Pell numbers? 

One way to obtain the Lucas numbers is to specify compositions 

n + nk where each rij is odd and n, is 1 or 3. 

The dual of this yields the compositions 

n = n + n2k+1 with all n2 • = 1 and n1n3 ^ 1. 

We have ignored A(T) and A2(T) throughout. However all the interpreta-
tions available for plane trees can be used. See for instance Gardner 
[3] and the references there. As one example, consider elections where 
votes are cast one at a time for candidates P and Q. There are 2n vo-
ters, P never trails Q, and at the end they tie. There are 

^ n 
_J_(2«\ 
n + 1 \n / 

such elections possible. Let us add the condition that the last K votes 
are for Q but that until then the election was almost monotonic in that 
if P's lead was £ votes, his lead would never be less than £ - 1 there-
after, except for the last K votes. This is just the interpretation of 
A(T) in Part I. Thus, we see that there are 2 n _ 1 such elections, since 
an integer n has a total of 2n~1 compositions. 
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ABSTRACT 

We describe a family of numbers that arises in the study of balanced 
search trees and that enjoys several properties similar to those of the bino-
mial coefficients. 

1. INTRODUCTION 

In the course of a recent investigation [4] concerning balanced search 
trees [2, Section 6.2.3], the following combinatorial problem arose. We en-
countered in the investigation a family {TL} of {1L + l)-level binary trees, 
L = 1, 2, ...; the problem was to determine, as a function of L and I e {0, 
1, ..., 2L}, the number of nonleaf nodes at level I of the (2L + 1)-level 
tree TL, (By convention, the root of TL is at level 0, the root's two sons 
are at level 1, and so on.) The numbers solving this problem, which we call 
profile numbers since, fixing L9 the numbers yield the profile of the tree 
TL [3], that is, the number of nodes at each level of TL 9 enjoy a number of 
features that are strikingly similar to properties of binomial coefficients. 
Foremost among these similarities are the generating recurrences and summa-
tion formulas of the two families of numbers. Let us denote by P(n9k), n _> 1 
and k _> 0, the number of nonleaf nodes at level k of the tree Tn , convention-
ally letting P(n,k) = 0 for all k > 2n; and let us denote by C(n9k)9 n >_ 1 
and k _> 0, the binomial coefficient, conventionally letting C(n,k) = 0 for 
k > n. The well-known generating recurrence 

C(n + l9k + 1) = C(n9k + 1) + C(n9k) 9 k >_ 0 

for the binomial coefficients is quite similar to the generating recurrence 

(1) P(n + l9k + 1) = P(n9k) + 2P(n9k - 1), k > 0 

for profile numbers. Further, the simple closed-form solution of the well-
known summation 

Y,C(n9k) = 2n - 1 
Q±k<n 

for binomial coefficients corresponds to the equally simple solution of the 


