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In 1970, Levy [1] published a number of results concerning the sum of 
the series ln + 2n + -•• 4- xn, which is known to be an n + 1-degree poly-
nomial Pn (x) whenever x is a positive integer. However, there is a natural 
generalization that will also hold for negative integers and zero as well. 
This is given in the following theorem. 

ThuQSiQjn 1: For each positive integer n there is exactly one polynomial such 
that 

J2 kn = Pn(x) - Pn(y) 
k = y + 1 

for all integral values of x and y9 where y < x. 

This theorem also holds for n = 0 if 0°  is interpreted as 1. The proof 
follows easily from two lemmas. 

LQJfnma 1» For each integer value of x _> 0, 

J^kn = Pn(x) - Pn(0). 
k = l 

This is true because Pn (0) = 0 for all n. 

LoMnci !• For each integer value of y < 0, 
o 
]T kn = PB(0) - Pn(y). 

k = y+l 

PK00&: 

i ; kn = £ (-«/>" = <-D"P„(-J/ - 1 ) = -p„Q/>. 
k=y + 1 j=0 

where the last equality follows from Theorem 3 in the paper by Levy. When 
x is a positive integer, Pn (x) is the sum of the series from 1 ton, and when 
x is a negative integer, then -Pn (x) is the sum of the series from x + 1 to 
0. 
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