Note: After completing this paper, we became aware of a similar calculation by Perry B. Wilson, in which some of the present results have been obtained (Stanford Linear Accelarator Report PEP-232, February 1977). We wish to thank Dr. S. Krinsky for calling our attention to this report.

REFERENCES

1. M. Gardner. Scientific American 228 (1973):105. This article is based in part on unpublished work of Dr. A. V. Grosse.
2. R. M. Sternheimer. "On a Set of Non-Associative Functions of a Single Positive Real Variable." Brookhaven Informa1 Report PD-128; BNL-23081 (June 1977).
3. T. M. Apostol. Calculus. Vol. I, p. 417. New York: B1aisde11, 1961.
4. Hartland S. Snyder. Private communication to R. M. S., 1960.
5. M. Creutz \& R. M. Sternheimer. "On a Class of Non-Associative Functions of a Single Positive Real Variable." Brookhaven Informal Report PD-130; BNL-23308 (September 1977).

the number of permutations with a given number of sequences
L. CARLITZ

Duke University, Durham, N.C. 27706

1. Let $P(n, s)$ denote the number of permutations of $Z_{n}=\{1,2, \ldots, n\}$ with s ascending or descending sequences. For example, the permutation 24315 has the ascending sequences 24,15 and the descending sequence 431 ; the permutation 613254 has ascending sequences 13,25 and descending sequences 61 , 32, 54. André proved that $P(n, s)$ satisfies the recurrence

$$
\begin{array}{r}
P(n+1, s)=s P(n, s)+2 P(n, s-1)+(n-s+1) P(n, s-2) \tag{1.1}\\
(n \geq 1)
\end{array}
$$

where $P(0, s)=P(1, s)=\delta_{0, s}$; for proof see Netto [3, pp. 105-112].
Using (1.1), the writer [1] obtained the generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(1-x^{2}\right)^{-n / 2} \frac{z^{n}}{n!} \sum_{s=0}^{\infty} P(n+1, s) x^{n-s}=\frac{1-x}{1+x}\left(\frac{\sqrt{1-x^{2}}+\sin z}{x-\cos z}\right)^{2} \tag{1.2}
\end{equation*}
$$

However, an explicit formula for $P(n, s)$ was not found.
In the present note, we obtain an explicit result, namely

$$
\left\{\begin{array}{l}
P(2 n-1,2 n-s-2)=\sum_{j=1}^{n}(-1)^{n-j} 2^{-j+2}(2 j-1)!\bar{K}_{n, j} M_{n, j, s} \tag{1.3}\\
P(2 n, 2 n-s-1)=\sum_{j=1}^{n}(-1)^{n-j} 2^{-j+1}(2 j)!\bar{K}_{n, j} M_{n, j, s},
\end{array}\right.
$$

where
and

$$
\bar{K}_{n, j}=\frac{1}{(2 j)!} \sum_{t=0}^{2 j}(-1)^{t}\binom{2 j}{t}(j-t)^{2 n}
$$

$$
M_{n, j, s}=\sum_{t=0}^{n-j}(-1)^{t}\binom{n-j}{t}\binom{n-2}{s-t}
$$

2. Put $y=\csc ^{2} x$. Then it is easily verified that ($D \equiv d / d x$)

$$
\begin{aligned}
D y & =-2 \csc ^{2} x \cot x \\
D^{2} y & =-4 \csc ^{2} x+6 \csc ^{4} x \\
D^{3} y & =8 \csc ^{2} x \cot x-24 \csc ^{4} x \cot x \\
D^{4} y & =16 \csc ^{2} x-120 \csc ^{4} x+120 \csc ^{6} x
\end{aligned}
$$

Generally, we can put

$$
\begin{equation*}
D^{2 n-2} y=\sum_{j=1}^{n}(-1)^{n-j} a_{n, j} \csc ^{2 j} x \quad(n \geq 1) \tag{2.1}
\end{equation*}
$$

Differentiation of (2.1) gives

$$
\begin{aligned}
D^{2 n-1} y & =\sum_{j=1}^{n}(-1)^{n-j+1} \cdot 2 j a_{n, j} \csc ^{2 j} x \cot x \\
D^{2 n} y & =\sum_{j=1}^{n}(-1)^{n-j} a_{n, j}\left\{4 j^{2} \csc ^{2 j} x \cot ^{2} x+2 j \csc ^{2 j+2} x\right\} \\
& =\sum_{j=1}^{n}(-1)^{n-j} a_{n, j}\left\{2 j(2 j+1) \csc ^{2 j+2} x-4 j^{2} \csc ^{2 j} x\right\} .
\end{aligned}
$$

Comparing this with

$$
D^{2 n} y=\sum_{j=1}^{n+1}(-1)^{n-j+1} a_{n+1, j} \csc ^{2 j} x
$$

we get the recurrence

$$
\begin{equation*}
\alpha_{n+1, j}=(2 j-1)(2 j-2) a_{n, j-1}+4 j^{2} a_{n, j}(n \geq 1) \tag{2.2}
\end{equation*}
$$

It follows easily from (2.2) that $a_{n, j}$ is divisible by ($2 j-1$)!. Thus, if we put

$$
\begin{equation*}
a_{n, j}=(2 j-1)!b_{n, j}, \tag{2.3}
\end{equation*}
$$

(2.2) becomes

$$
\begin{equation*}
b_{n+1, j}=b_{n, j-1}+4 j^{2} b_{n, j} \quad(n \geq 1) . \tag{2.4}
\end{equation*}
$$

Now put

$$
\begin{equation*}
b_{n, j}=2^{2 n-2 j} \bar{K}_{n, j}, \tag{2.5}
\end{equation*}
$$

so that (2.4) reduces to

$$
\begin{equation*}
\bar{K}_{n+1, j}=\bar{K}_{n, j-1}+j^{2} \bar{K}_{n, j} \quad(n \geq 1) . \tag{2.6}
\end{equation*}
$$

The $\bar{K}_{n, j}$ are evidently positive integers. Table 1 was obtained by means of (2.6).

The numbers $\bar{K}_{n, j}$ are called the divided central differences of zero [2], [5]. They are related to the $K_{n, j}$ of [2] by

$$
\begin{equation*}
\bar{K}_{n, j}=K_{n+1, j} . \tag{2.7}
\end{equation*}
$$

In the notation of divided central differences, we have (2.8)

$$
\bar{K}_{r s}=\delta^{2 s} O^{2 r} /(2 s)!
$$

where

Table 1

1	1	2	3	4	5
1	1				
2	1	1			
3	1	5	1		
4	1	21	30	1	
5	1	85	501	46	1

$$
\delta f(x)=f\left(x+\frac{1}{2}\right)-f\left(x-\frac{1}{2}\right)
$$

Thus,

$$
\begin{equation*}
\bar{K}_{r s}=\frac{1}{(2 s)!} \sum_{t=0}^{2 s}(-1)^{t}\binom{2 s}{t}(s-t)^{2 r} \tag{2.9}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
\sum_{n=1}^{\infty} \bar{K}_{r, s} \frac{x^{2^{r}}}{(2 r)!}=\frac{1}{(2 s)!}\left(e^{(1 / 2) x}-e^{-(1 / 2) x}\right)^{s} \quad(s \geq 1) . \tag{2.10}
\end{equation*}
$$

Substituting from (2.3) and (2.5) in (2.1), we get

$$
\begin{equation*}
D^{2 n-2} \csc ^{2} x=\sum_{j=1}^{n}(-1)^{n-j} 2^{2 n-2 j}(2 j-1)!\bar{K}_{n, j} \csc ^{2 j} x(n \geq 1) . \tag{2.11}
\end{equation*}
$$

Differentiation gives
(2.12) $D^{2 n-1} \csc ^{2} x=-\sum_{j=1}^{n}(-1)^{n-j} 2^{2 n-2 j}(2 j)!\bar{K}_{n, j} \csc ^{2 j} \phi \cot \phi \quad(n \geq 1)$.
3. Returning to the generating function (1.2), we take $x=\cos 2 \phi$ and replace z by $2 z$. Thus, the lefthand side becomes

$$
\sum_{n=0}^{\infty}(\sin 2 \phi)^{-n} \frac{2^{n} z^{n}}{n!} \sum_{s=0}^{n} P(n+1, s) \cos ^{n-s} 2 \phi
$$

The right-hand side is equal to

$$
\frac{1-\cos 2 \phi}{1+\cos 2 \phi}\left(\frac{\sin 2 \phi+\sin 2 z}{\cos 2 \phi-\cos 2 z}\right)^{2}=\frac{\sin ^{2} \phi}{\cos ^{2} \phi}\left(\frac{\cos (z-\phi)}{\sin (z-\phi)}\right)^{2} .
$$

Hence, we have

$$
\sum_{n=0}^{\infty}(\sin 2 \phi)^{-n} \frac{2^{n} z^{n}}{n!} \sum_{s=0}^{n} P(n+1, s) \cos ^{n-s} 2 \phi=\tan ^{2} \phi \cos ^{2}(z-\phi)
$$

Replacing ϕ by $-\phi$, this becomes

$$
\begin{gather*}
\sum_{n=0}^{\infty}(-1)^{n}(\sin 2 \phi)^{-n} \frac{2^{n} z^{n}}{n!} \sum_{=0}^{n} P(n+1, s) \cos ^{n-s} 2 \phi \tag{3.1}\\
=\tan ^{2} \phi \csc ^{2}(z+\phi)-\tan ^{2} \phi
\end{gather*}
$$

By Taylor's theorem,

$$
\csc ^{2}(z+\phi)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \frac{d^{n}}{d \phi^{n}} \csc ^{2} \phi .
$$

Hence, (3.1) yields

$$
(-1)^{n} 2^{n}(\sin 2 \phi)^{-n} \sum_{s=0}^{n} P(n+1, s) \cos ^{n-s} 2 \phi=\tan ^{2} \phi \frac{d^{n}}{d \phi^{n}} \csc ^{2} \phi,
$$

so that

$$
\begin{equation*}
\sum_{s=0}^{n} P(n+1, s) \cos ^{n-s} 2 \phi=(-1)^{n} \sin ^{n+2} \phi \cos ^{n-2} \phi \frac{d^{n}}{d \phi^{n}} \csc ^{2} \phi \quad(n \geq 1) \tag{3.2}
\end{equation*}
$$

Replacing n by $2 n-2$ and making use of (2.11), we get

$$
\begin{align*}
& \sum_{s=0}^{2 n-2} P(2 n-1, s) \cos ^{2 n-s-2} 2 \phi \tag{3.3}\\
& \quad=\sin ^{2 n} \phi \cos ^{2 n-4} \phi \sum_{j=1}^{n}(-1)^{n-j} 2^{2 n-2 j}(2 j-1)!\bar{K}_{n, j} \csc ^{2 j} \phi \quad(n \geq 1)
\end{align*}
$$

Similarly, by (2.12),

$$
\begin{align*}
& \sum_{s=0}^{2 n-1} P(2 n, s) \cos ^{2 n-s-1} 2 \phi \tag{3.4}\\
& \quad=\sin ^{2 n} \phi \cos ^{2 n-4} \phi \sum_{j=1}^{n}(-1)^{j} 2^{2 n-2 j}(2 j)!\bar{K}_{n, j} \csc ^{2 j} \phi \quad(n \geq 1) .
\end{align*}
$$

We have, for $1 \leq j \leq n$,

$$
\begin{aligned}
2^{2 n-2 j} \sin ^{2 n-2 j} \phi \cos ^{2 n-4} \phi & =2^{-j+2}(1-\cos 2 \phi)^{n-j}(1+\cos 2 \phi)^{n-2} \\
& =2^{-j+2} \sum_{r=0}^{n-j} \sum_{t=0}^{n-2}(-1)^{r}\binom{n-j}{p}\binom{n-2}{t} \cos ^{r+t} 2 \phi
\end{aligned}
$$

For $r+t=2 n-s-2$, comparison with (3.3) gives

$$
P(2 n-1, s)=\sum_{j=1}^{n}(-1)^{n-j} 2^{-j+2}(2 j-1)!\bar{K}_{n, j} \cdot \sum_{r=0}^{n-j}(-1)^{r}\binom{n-j}{r}\binom{n-2}{2 n-r-s-2}
$$

Replacing s by $2 n-s-2$, we have

$$
\begin{align*}
P(2 n-1,2 n-s-2)= & \sum_{j=1}^{n}(-1)^{n-j} 2^{-j+1}(2 j-1)!\bar{K}_{n, j} \tag{3.5}\\
& \cdot \sum_{r=0}^{n-j}(-1)^{r}\binom{n-j}{r}\binom{n-2}{s-r} .
\end{align*}
$$

The corresponding result for $P(2 n, 2 n-s-1)$ is

$$
\begin{align*}
P(2 n, 2 n-s-1)= & \sum_{j=1}^{n}(-1)^{n-j} 2^{-j+1}(2 j)!\bar{K}_{n, j} \tag{3.6}\\
& \cdot \sum_{r=0}^{n-j}(-1)^{r}\binom{n-j}{p}\binom{n-2}{s-r} .
\end{align*}
$$

This completes the proof of the following theorem.
Theorem: Let $n>1$. The number of permutations of Z_{n} with a given number of sequences is determined by

$$
\begin{align*}
P(2 n-1,2 n-s-2) & =\sum_{j=1}^{n}(-1)^{n-j} 2^{-j+2}(2 j-1)!\bar{K}_{n, j} M_{n, j}, s \tag{3.7}\\
P(2 n, 2 n-s-1) & =\sum_{j=1}^{n}(-1)^{n-j} 2^{-j+1}(2 j)!\bar{K}_{n, j} M_{n, j, s},
\end{align*}
$$

where
and

$$
\begin{equation*}
\bar{K}_{n, j}=\frac{1}{(2 j)!} \sum_{t=0}^{2 j}(-1)^{t}\binom{2 j}{t}(j-t)^{2 n} \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
M_{n, j, s}=\sum_{t=0}^{n-j}(-1)^{t}\binom{n-j}{t}\binom{n-2}{s-t} \tag{3.9}
\end{equation*}
$$

4. It follows from the definition that, for $n>1, P(n, 1)=2$. In the first of (3.7), take $s=2 n-3$. Then, by (3.9),

$$
M_{n, j, 2 n-3}=\sum_{r=0}^{n-j}(-1)^{r}\binom{n-j}{p}\binom{n-2}{2 n-r-3},
$$

so that $2 n-r-3 \leq n-2, n-1 \leq r$ and $j=0$ or 1 . Since $\bar{K}_{n, 0}=0, \bar{K}_{n, 1}=$ $1, M_{n, 1,2 n-3}=(-1)^{\bar{n}-1}$, we get

$$
P(2 n-1,1)=(-1)^{n-1} 2 \cdot(-1)^{n-1}=2
$$

Similarly, by the second of (3.7), $P(2 n, 1)=2$.
A permutation of Z_{n} with $n-1$ ascents and descents is either an up-down or a down-up permutation. Since the number of up-down permutations is equal to the number of down-up permutations, we have

$$
(4.1)
$$

$$
P(n, n-1)=2 A(n) \quad(n \geq 2)
$$

where $A(n)$ is the number of up-down permutations of Z_{n}. Hence, in applying (3.7) to this case it is only necessary to take $s=0$. By equation (3.9), we have $M_{n, j, 0}=0$. Thus (3.7) implies

$$
\begin{align*}
A(2 n-1) & =\sum_{j=1}^{n}(-1)^{n-j} 2^{-j+1}(2 j-1)!\bar{K}_{n, j} \tag{4.2}\\
A(2 n) & =\sum_{j=1}^{n}(-1)^{n-j} 2^{-j}(2 j)!\bar{K}_{n, j}
\end{align*}
$$

André [3] proved that

$$
\begin{align*}
\sum_{n=1}^{\infty} A(2 n-1) \frac{x^{2 n-1}}{(2 n-1)!} & =\tan x \\
\sum_{n=0}^{\infty} A(2 n) \frac{x^{2 n}}{(2 n)!} & =\sec x \tag{4.3}
\end{align*}
$$

On the other hand, in the notation of Nörlund [4, Ch. 2],
where

$$
\begin{aligned}
& \tan x=\sum_{n=1}^{\infty}(-1)^{n} C_{2 n-1} \frac{x^{2 n-1}}{(2 n-1)!} \\
& \sec x=\sum_{n=0}^{\infty}(-1)^{n} E_{2 n} \frac{x^{2 n}}{(2 n)!}
\end{aligned}
$$

$$
C_{n-1}=2^{n}\left(1-2^{n}\right) \frac{B_{n}}{2!}
$$

and B_{n}, C_{n} are the Bernouli and Euler numbers, respectively. Thus, by (4.3),

$$
\begin{align*}
& A_{2 n-1}=(-1)^{n} C_{2 n-1}=(-1)^{n} 2^{2 n}\left(1-2^{2 n}\right) \frac{B_{2 n}}{2 n} \tag{4.4}\\
& A(2 n)=(-1)^{n} E_{2 n} .
\end{align*}
$$

Therefore, by (4.2) and (4.4),
and

$$
\begin{equation*}
2^{2 n}\left(1-2^{2 n}\right) \frac{B_{2 n}}{2 n}=\sum_{j=1}^{n}(-1)^{j} 2^{-j+1}(2 j-1)!\bar{K}_{n, j} \tag{4.5}
\end{equation*}
$$

$$
\begin{equation*}
E_{2 n}=\sum_{j=1}^{n}(-1)^{j} 2^{-j}(2 j)!\bar{K}_{n, j} \tag{4.6}
\end{equation*}
$$

The representation (4.5) may be compared with the following formula in [2]:

$$
\begin{equation*}
(2 r+1) B_{2 r}=\sum_{s=1}^{r+1}(-1)^{s-1}((s-1)!)^{2} s^{-1} K_{r+1,} s^{\circ} \tag{4.7}
\end{equation*}
$$

We remark that it is proved in [1] that

$$
\begin{equation*}
P(n, n-s)=\sum_{j=1}^{s} f_{s, j}(n) A(n+s-j) \quad(1 \leq s \leq n), \tag{4.8}
\end{equation*}
$$

where the $f_{s j}(n)$ are polynomials in n that satisfy $f_{s 1}(n)=1$ and

$$
s f_{s+1, j}(n)=f_{s, j}(n+1)-(n-s+1) f_{s-1, j-2}(n)-2 f_{s, j-1}(n) .
$$

Thus, it would be of interest to evaluate the $f_{s_{j}}(n)$.

REFERENCES

1. L. Car1itz. "Enumeration of Permutations by Sequences." The Fibonacci Quarterly 16 (1978):259-268.
2. L. Carlitz \& John Riordan. "The Divided Central Differences of Zero." Canadian Journal of Mathematics 15 (1963):94-100.
3. E. Netto. Lehrbuch der Combinatorik. Leipzig: Teubner, 1927.
4. N. E. Nörlund. Vorlesungen über Differenzenrechnung. Berlin: Springer, 1924.
5. J.F. Steffensen. Interpolation. Baltimore: Williams and Wilkens, 1927.
