ELEMENTARY PROBLEMS AND SOLUTIONS

Edited by
A. P. HILLMAN
University of New Mexico, Albuquerque, NM 87131

Send all communications regarding ELEMENTARY PROBLEMS AND SOLUTIONS to PROFESSOR A. P. HILLMAN, 709 Solano Dr., S.E., Albuquerque, New Mexico 87108. Each solution or problem should be on a separate sheet (or sheets). Preference will be given to those typed with double spacing in the format used below. Solutions should be received within four months of the publication date.

DEFINITIONS
The Fibonacci numbers F_{n} and the Lucas numbers L_{n} satisfy
$F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1$ and $L_{n+2}=L_{n+1}+L_{n}, L_{0}=2, L_{1}=1$.
A1so, a and b designate the roots $(1+\sqrt{5}) / 2$ and $(1-\sqrt{5}) / 2$, respectively, of $x^{2}-x-1=0$.

PROBLEMS PROPOSED IN THIS ISSUE

B-436 Proposed by Sahib Singh, Clarion State College, Clarion, PA.
Find an appropriate expression for the nth term of the following sequence and also find the sum of the first n terms:

$$
4,2,10,20,58,146,388,1010, \ldots .
$$

B-437 Proposed by G. Iommi Amunategui, Universidad Católica de Valparaíso, Valparaíso, Chile.

Let $[m, n]=m n(m+n) / 2$ for positive integers m and n. Show that:
(a) $[m+1, n][m, n+2][m+2, n+1]=[m, n+1][m+2, n][m+1, n+2]$.
(b) $\sum_{k=1}^{m}[m+1-k, k]=m(m+1)^{2}(m+2) / 12$ 。
(We note that part (a) is the Hoggatt-Hansell "Star of David" property for the [$m, n]$.)
B-438 Proposed by Gregory Wulczyn, Bucknell University, Lewisburg, PA.
Let n and w be integers with w odd. Prove or disprove the proposed identity

$$
F_{n+2 w} F_{n+w}-2 L_{w} F_{n+w} F_{n-w}+F_{n-w} F_{n-2 w}=\left(L_{3 w}-2 L_{w}\right) F_{n}^{2}
$$

B-439 Proposed by A. P. Hillman, University of New Mexico, Albuquerque, NM.
Can the proposed identity of $B-438$ be proved by mere verification for a finite set of ordered pairs (n, w)? If so, how few pairs suffice?
B-440 Proposed by Jeffrey Shallit, University of California, Berkeley, CA.
(a) Let $n=x^{2}+y^{2}$, with x and y integers not both zero. Prove that there is a nonnegative integer k such that $n \equiv 2^{k}\left(\bmod 2^{k+2}\right)$.
(b) If $n \equiv 2^{k}\left(\bmod 2^{k+2}\right)$, must n be a sum of two squares?

B-441 Proposed by Jeffrey Shallit, University of.California, Berkeley, CA.
A base- b palindrome is a positive integer whose base- b representation reads the same forward and backward. Prove that the sum of the reciprocals of all base- b palindromes converges for any given integer $b \geq 2$.

SOLUTIONS

GCD Not LCM
B-412 Proposed by Phil Mana, Albuquerque, NM.
Find the least common multiple of the integers in the infinite set

$$
\left\{2^{9}-2,3^{9}-3,4^{9}-4, \ldots, n^{9}-n, \ldots\right\} .
$$

Solution by Sahib Singh, Clarion College, Clarion, PA.
The least common multiple is infinite because every positive integer n is to be its factor. If we want the greatest common divisor of the members of the set, we note that

$$
n^{9}-n=n(n-1)(n+1)\left(n^{2}+1\right)\left(n^{4}+1\right)=\left(n^{5}-n\right)\left(n^{4}+1\right) .
$$

Since $n(n-1)(n+1) \equiv 0(\bmod 6)$ and $n^{5}-n \equiv 0(\bmod 5)$, we conclude that

$$
n^{9}-n \equiv 0(\bmod 30) \text { for } n=2,3, \ldots .
$$

By examining the first two terms of the set, we see that the greatest common divisor is 30 .

Also solved by Paul. S. Bruckman, Lawrence Somer, and the proposer.

Counting Equilateral Triangles

B-413 Proposed by Herta T. Freitag, Roanoke, VA.
For every positive integer n, let U_{n} consist of the points $j+k e^{2 \pi i / 3}$ in the Argand plane with

$$
j \varepsilon\{0,1,2, \ldots, n\} \text { and } k \varepsilon\{0,1, \ldots, j\} .
$$

Let $T(n)$ be the number of equilateral triangles whose vertices are subsets of U_{n}. For example, $T(1)=1, T(2)=5$, and $T(3)=13$.
(a) Obtain a formula for $T(n)$.
(b) Find all n for which $T(n)$ is an integral multiple of $2 n+1$.

Solution by W.O. J. Moser, McGill University, Montreal, P.Q., Canada.
For the problem as given, $T(3)$ is 15 and not 13 as stated in the problem. The difference may be accounted for by the triang1es $\{[2,2],[1,0],[3,1]\}$ and $\{[1,1],[2,0],[3,2]\}$, where $[j, k]$ denotes $j+k e^{2 \pi i / 3}$. The proposer probably meant to count only the triangles with a side parallel to the real axis. The intended problem is the same as Problem 889, Math. Mag. 47 (1974), solution ibid. 47 (1974):289-91, where other references are given.

Using the following well-known result one can count various sets of vertices forming equilateral triang1es in U_{n} :
Lemma: Let m and r be integers, $m \geq 0, r \geq 1$. The number of ordered r-tuples $\left(a_{1}, \ldots, a_{r}\right)$ of nonnegative integers α_{i} satisfying $\alpha_{1}+\cdots+\alpha_{n}=m$ is

$$
\binom{m+r-1}{p-1} .
$$

Triples of the form

$$
\begin{gathered}
\{[j, k],[j-i, k],[j, k+i]\},\{[j, k],[j, k-i],[j+i, k]\}, \\
\{[j+i, k],[j, k+i],[j-i, k-i]\}, \\
\{[j-i, k],[j, k-i],[j+i, k+i]\}
\end{gathered}
$$

all form equilateral triangles.

Let $A_{s}(n)$ for $s=1,2,3,4$ denote the numbers of triples in U of these forms in the order listed. Geometrically, one sees easily that $A_{3}(n)=A_{4}(n)$.

Since $[j, k] \varepsilon U_{n}$ if and only if j and k are integers with $0 \leq k \leq j \leq n$, $A_{1}(n)$ is the number of ordered triples (i, j, k) of nonnegative integers satisfying $1 \leq i$ and $k+i \leq j \leq n$. Letting $x=i-1, y=k, z=j-i-k$, and $w=n-j$, we see that $A_{1}(n)$ is the set of ordered quadruples (x, y, z, w) of nonnegative integers with $x+y+z+w=n-1$; hence, $A_{1}(n)=\binom{n+2}{3}$ by the lemma. Other types of triangles may be enumerated similarly.

The answer for the intended problem is

$$
T(n)=\left[n(2 n+1)(n+2)-\theta_{n}\right] / 8
$$

with $\theta_{n}=0$ for n even and $\theta_{n}=1$ for n odd. Hence, $(2 n+1) \mid T(n)$ iff n is even.
Also solved by Paul S. Bruckman and the proposer.
B-414 Proposed by Herta T'. Freitag, Roanoke, VA.
Let

$$
S_{n}=L_{n+5}+\binom{n}{2} L_{n+2}-\sum_{i=2}^{n}\binom{i}{2} L_{i}-11 .
$$

Determine all n in $\{2,3,4, \ldots\}$ for which S_{n} is (a) prime; (b) odd. Solution by Paul S. Bruckman, Concord, CA.

Note that

$$
\begin{aligned}
& \Delta S_{n}=S_{n+1}-S_{n}=L_{n+4}+\binom{n+1}{2} L_{n+3}-\binom{n}{2} L_{n+2}-\binom{n+1}{2} L_{n+1} \\
& =L_{n+4}+\left\{\binom{n+1}{2}-\binom{n}{2}\right\} L_{n+2}=L_{n+4}+n L_{n+3} \\
& =(n+1) L_{n+4}-n L_{n+3} \text {. } \\
& \text { Hence, } S_{n}=n L_{n+3}+c \text {, for some constant } c \text {. Now } \\
& S_{2}=L_{7}+L_{4}-L_{2}-11=29+7-3-11=22 ;
\end{aligned}
$$

but a1so,

$$
S_{2}=2 L_{5}+c=2 \cdot 11+c=22+c .
$$

Hence, $c=0$. Therefore,

$$
\begin{equation*}
S_{n}=n L_{n+3}, n=2,3,4, \ldots \tag{1}
\end{equation*}
$$

Clearly, since n and L_{n+3} are each integers greater than 1 (for $n \geq 2$), S_{n} is never prime. In order for S_{n} to be odd, both n and L_{n+3} must be odd. Now L_{n} is even iff $3 \mid n$, as is readily seen by inspection of the first few values (mod 2) of the Lucas sequence. Hence, L_{n+3} is odd iff $3 \nmid n$. It follows that S_{n} is odd iff $n \equiv \pm 1(\bmod 6)$.

Also solved by Bob Prielipp, Sahib Singh, and the proposer.
PROPOSALS TABLED
No solutions to problem B-415 were received. The problem was restated by the Elementary Problems Editor in a form not equivalent to the original prob1em.

No solutions to problem B-416 were received.

Not a Bracket Function

B-417 Proposed by R. M. Grassl and P. L. Mana, University of New Mexico, Albuquerque, $N M$

Here let $[x]$ be the greatest integer in x. Also, let $f(n)$ be defined by

$$
f(0)=1=f(1), f(2)=2, f(3)=3,
$$

and

$$
f(n)=f(n-4)+\left[1+(n / 2)+\left(n^{2} / 12\right)\right] \text { for } n \varepsilon\{4,5,6, \ldots\}
$$

Do there exist rational numbers a, b, c, and d such that

$$
f(n)=\left[a+b n+c n^{2}+a n^{3}\right] ?
$$

Solution by Paul S. Bruckman, Concord, CA.
We first prove the following:

$$
\begin{equation*}
f(12 n)=12 n^{3}+15 n^{2}+6 n+1, n=0,1,2, \ldots . \tag{1}
\end{equation*}
$$

Let S denote the set of all nonnegative integers n for which (1) is true. Since $f(0)=1$, it is clear that $0 \varepsilon S$. Now $f(12 n+12)-f(12 n)$
$=\sum_{k=0}^{2}(f(12 n+4 k+4)-f(12 n+4 k))=\sum_{k=0}^{2}\left(1+6 n+2 k+2+\left[\frac{16}{12}(3 n+k+1)^{2}\right]\right)$
$=\sum_{k=0}^{2}\left(3+6 n+2 k+\left[\frac{4}{3}\left\{9 n^{2}+6 n(k+1)+(k+1)^{2}\right\}\right]\right)$
$=\sum_{k=0}^{2}\left\{\left(3+6 n+2 k+12 n^{2}+8 n(k+1)\right)\right\}+[4 / 3]+[16 / 3]+12$
$=1+5+12+\sum_{k=0}^{2}\left\{3+14 n+12 n^{2}+(8 n+2) k\right\}$
$=3\left(12 n^{2}+14 n+3\right)+3(8 n+2)+18$, or

$$
\begin{equation*}
f(12(n+1))-f(12 n)=36 n^{2}+66 n+33 \tag{2}
\end{equation*}
$$

Suppose $n \in S$. Then

$$
\begin{aligned}
f(12(n+1)) & =12 n^{3}+15 n^{2}+6 n+1+36 n^{2}+66 n+33 \\
& =12 n^{3}+51 n^{2}+72 n+34 \\
& =12(n+1)^{3}+15(n+1)^{2}+6(n+1)+1
\end{aligned}
$$

Hence, $n \varepsilon S \Rightarrow(n+1) \varepsilon S$. By induction, (1) is proved.
Now, suppose that for all $n \geq 0$,

$$
\begin{equation*}
f(n)=\left[a+b n+c n^{2}+d n^{3}\right] \tag{3}
\end{equation*}
$$

for some rational a, b, c, and d independent of n. Then

$$
f(n)=a+b n+c n^{2}+d n^{3}+e_{n}
$$

where $e_{n}=0(n)$ as $n \rightarrow \infty$. In particular, substituting $12 n$ for n :

$$
\begin{equation*}
f(12 n)=a+12 b n+144 c n^{2}+1728 d n^{3}+e_{12 n} \tag{4}
\end{equation*}
$$

By comparison of (1) and (4), it follows that $12 b=6,144 c=15,1728 d=12$, i.e.,

$$
\begin{equation*}
b=1 / 2=72 / 144, c=15 / 144, d=1 / 144 \tag{5}
\end{equation*}
$$

Hence,
(6)

$$
f(n)=\left[\frac{n^{3}+15 n^{2}+72 n}{144}+a\right], n=0,1,2, \ldots .
$$

Note that
$f(5)=f(1)+[1+5 / 2+25 / 12]=1+1+[55 / 12]=6$,
and $f(9)=f(5)+[1+9 / 2+81 / 12]=6+1+[45 / 4]=18$.
Setting $n=0$ in (6) yields:

$$
f(0)=1=[\alpha]
$$

however, setting $n=9$ in (6) yields:

$$
f(9)=18=[18+\alpha],
$$

which implies $[\alpha]=0$. This contradiction establishes that the supposition in (3) is false.

Also solved by the proposers.

