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5 ( 2 , 1 ) = Ak + 3(l) . - 3Ak + 2 ( l ) + 3Ak + 1(l) - Ak{\) 

= (fc + 4) - 3(fc + 2) + 3(k + I ) - Zc = 1, 

5 ( 3 , 1) = 4 + 2 ( D - 34fc + 1 ( l ) + 3 4 f c ( l ) - ^ ^ ( l ) 
= (k 4- 2) - 3(fc + 1) + 3(fc) - (fc - 1) = 0 , 

Sti, 1) - V s - , - 3 ( 1 H + W
( 1 ) + 3 ^ + 3 . / l ) - ^ + 2- / ! ) 

= (fc + 5 - j ) - (k + 4 - j ) + (fe + 3 - j ) - (& + 2. - j ) 

= 0 fo r 4 £ j £ Zc + 1. 

F i n a l l y , 5 ( 1 , n) ~ Ak+h(n) -3Ak + 3(n) + 3Ak+2(n) - Ak + 1(n) , 

5 ( 2 , n) = Ak + 3(n) - 3Ak + 2(n) + 34fc + 1(w) - Ak(n) - 1, 

SO", w) = Ak + 5.j(n) - 3 4 + w (n ) + 3^ + 3 „ j . (n) - Ak + Zr.J9 

for 3 £ j £ fe + 1. 
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1 . SUMMARY 

Schwenk [1] considers take-away games where the players alternately re-
move a positive number of counters from a single pile, the player removing the 
last counter being the winner. On his initial move, the player moving first 
can remove at most a given number m of counters. On each subsequent move, a 
player can remove at most f(ri) counters, where n is the number of counters re-
moved by his opponent on the preceding move. In [1], Schwenk solves the case 
when f(n) is nondecreasing and f(n)>_n. This solution is extended to the case 
when f(n) is nondecreasing and /(!)_> 1» 

2. THE WINNING REPRESENTATION 

Let f(n) >1 be a nondecreasing function defining a take-away game. If a 
player whose turn it is to move is confronted with a pile of n _> 1 counters, 
let L(n) be the minimal number of counters he must remove in order to assure 
a win. Let L(0) = °°e Note that L(n) <_ n for n >_ 1 and that equality might 
hold. Note also that removing k counters from a pile of n is a winning strat-
egy if and only if f(k) < L(n - k). 

ThtQKom 2.1: Suppose f(k) < L(n - k); then k = L(n) if and only if L(k) = k. 

VKOO^1 Suppose that L(k) < k. By removing L(k) counters from a pile of 
counters, a player can then guarantee he will eventually remove the last of 
the first k counters, and that he will do this by removing £ < k counters. 
His opponent will than face a pile of. n - k counters and be able to remove at 

^Research partially supported by NSF Grant MCS 72-04591. 
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most /(£) £ f(k) < L(n-k) counters9 implying the opponent cannot win. Thus, 
removing L(k)<k counters is a winning strategy and k can be minimal winning, 
i.e., L(n) = k9 only if L(k) = k. 

Conversely, if L(k) = k and a player removes fewer than k counters, his 
opponent can eventually remove the last of the first k counters. Since the 
opponent will do this by removing I < k counters, and since 

fW <f(k) < L(n - k)s 

we see that the opponent can win. Thus, if L(k) =k9 then k is minimal winning 
and L(n) = k. 

The integers H such that L(H) = H form an increasing, possibly finite se-
quence Hj- satisfying the following theorems. 

n 
Tkto^m 2.2: If N = V HJ and if f(#, ) < HJ for i < n - 1, then 

dm^J Jh <> di tli + l 
^ = 1 

L(N) = HJr 
VKOO^i The theorem is true by definition when n = 1. Suppose the theorem is 
t r u e for n and 

w + l 
N =Y,\> fUJ{) < ffi<+1 , i < n . 

i = l 

Then f(Hj ) < Hj = L(N - HJ ) . But s i n c e L(Hdi) = Hj , Theorem 2 .1 g ives 

comple t ing t he p roof . 

Tfieo/LgJTt 2 . 3 : Any p o s i t i v e i n t e g e r N can be w r i t t e n un ique ly a s 

i = ± 

VKOoh*. Let HJ = L(tf) and define 

Ei. - L(N - £ 5 4 ) u n t i l E ^ =N-
\ k-l / i - i 

f{Hh) < L(N - £ HJk - HA = L\N - £ ff, \ = ^ i + 1 for i < n - 1. 

Uniqueness follows easily from Theorem 2.2 and a simple induction. 
The winning strategy for the game is now clear. Represent the number of 

counters N as 
n 

N = Y]H- with f(Hj ) < HJ for i < n - 1, 
% = 1 

and remove HJ counters. 
d i 

3. CALCULATION OF THE Hi
ls 

To complete the picture, we have the following theorem on the calcula-
tion of the Hi ?s. 
IhdOKom 3.1: H1 = 1 and if f(Hj) >. H-, then ̂ . + 1 = ̂  + #£ , where 

#£ = min{#J/(#,-) >F,}. 

If f(Hj) < Hj, the sequence H± is finite and #j is the final term. 
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VK-OO^i H1 = 1 is obvious. If f(Mj) >. Ej9 define Hj + Ez as in the statement 
of the theorem. We must show that L(Ej + Ez) = E3- + Ez, and to do this, we 
show that 

f(k) >. L (Hd + Ez - k) for 1 <_ k < Hd + Ez . 

First, if Hz < k < Eg- + Ez> then k - Ez < Ed , and so 

f(k) >_ f(k - Ez) >_ L(Hd - (k - #£)) = L(^- + F £ - fc). 

If fc = #£, then 

f(k) = jf(ffA) .> /^ = L(Mj) = £ % + Ez - k). 
If 1 <. fc < #£, then f(k) >_ L(EZ - k) . But 

n 
Ez - k = ̂  ^ with / (#.,•. ) < ̂ i + i f or i <_ n - 1, and L(EZ - k) = ̂  -

. - £ = 1 
As a result, 

n 
HJ +Ei -k = E ^ + ^ . 

i = l 
and since #£ is the smallest Ei with f(Ei) >_ Ej , it follows that f(Ejn) < Ej . 
Therefore, Theorem 2.2 gives L(Ed + Ez - k) = Ej± = L(#£ - Zc) <_ /(&)." 

We have just shown that L O ^ + E z) = #j + Ez . To show that Eg- + Ez is 
indeed the next term in the. E^ sequence, we need only show that 

L(Hd + k) < Ed + k for 1 <_ k < Hz. 
But such a fc can be r e p r e s e n t e d as 

n 
k = ^2'Hd w i th / ( F j . ) < EJi + i f o r i <. n - 1, 

i = l 

and s i n c e Ej < Ez , we have / ( F j ) < F ^ . Hence, 

L(Ej + fc) = l / f > ^ + ^ = ^ <Ed +k 

by Theorem 2.2, and we have shown that Ej+1 = Ej + Ez. 
Suppose now that f(Ej) < Ej9- any positive integer JV can be written as 

N = k + tfz#-- where ks m > 0 are integers and 0 < k < E • . But we can represent 
k as 

re 

^ = X ) R3- w h e r e /(^jf ) < Hj. for i £ n - 1, 
i = i 

and since f(E3- ) £ f(Ej) < E- , the representation 
n 

N = S ^- , + Hi+ HJ + • • • + ffi 
t = l 

and Theorem 2.2 tells us that L(N) = ̂ ^ < Ej . Thus, F. is the largest Ei and 
the theorem is proved. 

It may be noted that take-away games with the last player losing may be 
played with the same strategy but regarding the pile as having one less coun-
ter than is actually the case. 
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1. INTRODUCTION 

For v >_ 0, define the integers sr (n, /<) and Sr(n, k) by means of 

(i-^ (io§(i -xyi - 1Lxii*t= ( E ^ Y 
= k* / J s r ( n 9 k)xn/nl, 

n = (r + l)k 

( V \ k J oo v ^ oo 

^=0 / \j=r + l / n = (r + l)k 

We will call sr(ns k) the r-associated Stirling number of the first kind9 and 
Sr(n, k) the r-associated Stirling number of the second kind. The terminol-
ogy and notation are suggested by Comtet [69 pp. 2219 257]. When v - 09 we 
have s0(n, k) = (~l)n+ks(ns k) , where s (n, k) is the Stirling number of the 
first kind, and SQ(ns k) = S(ns k) is the Stirling number of the second kind. 
(In ComtetTs notation this is true when P = 1.) If we define the polynomials 
sr n(y) and SryTl(y) by means of 

(1.3) exph/ ]T X3'IQ\ - J2 srsn(y)xn/nl9 

(1.4) exV(y J x*/jl) = YJSr>n(y)xn/nl9 

it follows immediately that 

[ n / r + l] 
(1.5) s r , n ^ ) = S Mn* j)#J'* 
a n d [ n / r + 1] 
(1.6) ^ P , » 0 / ) = X ^ ( n > ^ J " » 

Since the r-associated Stirling numbers of the second kind have appeared 
in two recent papers [7] and [9]9 it may be of interest to examine their com-
binatorial significance, their history5 and their basic properties* We do this 
in §2, §39 and §4 for both the numbers of the first and second kind. Another 
purpose of this paper is to show how all the results of two recently published 
articles concerned with Stirling and Bell numbers, [7] and [16] can be gen-
eralized by the use of '(1.2), (1.4), and (1.6). This is done in §5 and §6. To 
the writer's knowledge, the p-associated Stirling numbers of the first kind 


