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1. INTRODUCTION 

For v >_ 0, define the integers sr (n, /<) and Sr(n, k) by means of 

(i-^ (io§(i -xyi - 1Lxii*t= ( E ^ Y 
= k* / J s r ( n 9 k)xn/nl, 

n = (r + l)k 

( V \ k J oo v ^ oo 

^=0 / \j=r + l / n = (r + l)k 

We will call sr(ns k) the r-associated Stirling number of the first kind9 and 
Sr(n, k) the r-associated Stirling number of the second kind. The terminol-
ogy and notation are suggested by Comtet [69 pp. 2219 257]. When v - 09 we 
have s0(n, k) = (~l)n+ks(ns k) , where s (n, k) is the Stirling number of the 
first kind, and SQ(ns k) = S(ns k) is the Stirling number of the second kind. 
(In ComtetTs notation this is true when P = 1.) If we define the polynomials 
sr n(y) and SryTl(y) by means of 

(1.3) exph/ ]T X3'IQ\ - J2 srsn(y)xn/nl9 

(1.4) exV(y J x*/jl) = YJSr>n(y)xn/nl9 

it follows immediately that 

[ n / r + l] 
(1.5) s r , n ^ ) = S Mn* j)#J'* 
a n d [ n / r + 1] 
(1.6) ^ P , » 0 / ) = X ^ ( n > ^ J " » 

Since the r-associated Stirling numbers of the second kind have appeared 
in two recent papers [7] and [9]9 it may be of interest to examine their com-
binatorial significance, their history5 and their basic properties* We do this 
in §2, §39 and §4 for both the numbers of the first and second kind. Another 
purpose of this paper is to show how all the results of two recently published 
articles concerned with Stirling and Bell numbers, [7] and [16] can be gen-
eralized by the use of '(1.2), (1.4), and (1.6). This is done in §5 and §6. To 
the writer's knowledge, the p-associated Stirling numbers of the first kind 
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have not been studied before. Since most of their properties and formulas are 
analogous to those of the numbers of the second kind, it seems appropriate to 
include them in this paper,. 

2. COMBINATORIAL SIGNIFICANCE 

Let a19 a2» ̂ 35 •'•• be any strictly increasing sequence of positive inte-
gers* It-follows from [12, Ch. 4] that the numbers t(n9 k) and T(n9 k) defined 
by means of 

(2.1) (yx^IaX =klJ2t(n> ^"/n!» 
and V ^ 1 ' n l ° 
(2.2) / ^xa*Kad)\\k = klJ^Tin, k)xn/nl 

have the following combinatorial interpretation: t(n9 k) is the number of per-
mutations of 1, 2, ..., n having exactly k cycles such that the number of ele-
ments in each cycle is equal to one of the a^\ T(n9 k) is the number of set 
partitions of 1, 2, ..., ft consisting of exactly k blocks (subsets) such that 
the number of elements in each block is equal to one of the a^ . Furthermores 
if we define tn(y) and Tn (y) by means of 

•(2.3) expfz/^a^VajA = J tn(y)xn/nl, 
and 

(2.4) ex4yJ2x<2k/(a^1) ~%Tn(y)xnln\> 

it follows that 
n 

(2.5) tn(y) = £ * ( n , 3)yJ, 
and 

n 
(2 .6 ) Tn(y) = ̂ f ( n 5 j)yJ\ 

j - o 

Thus tn(l) is the number of permutations of 1, 2, ..., ft such that the number 
of elements in each cycle is equal to one of the a^9 and Tn(l) is the number 
of set partitions of 1, 2, . .., ft such that the number of elements in each 
block is equal to one of the a^. 

As Riordan [12, p. 74] points out, the presence or absence of cycles (or 
blocks) of various lengths can easily be included in the generating functions 
(2.1) and (2.2) , though the mathematics required to obtain numerical results 
may be very elaborate. There are many examples in the problems of {12, pp. 
80-89]. Other interesting examples can be found in [1] and [3]. 

It is clear, then, that the r-associated Stirling numbers have the fol-
lowing interpretations: 

The number sr.(n9 k) is equal to the number of permutations of 1, 2, . .., 
ft having exactly k cycles such that each cycle has at least r+ 1 elements. It 
is understood that in any cycle the smallest element is written first. The 
number sPjn(l) is equal to the number of permutations of 1, 2, .. ., n such that 
each cycle has at least r+ 1 elements. If we give a permutation with exactly 
j cycles a "weight" of yJ9 then sr}U(y) is the sum of the weights of all the 
permutations of 1, 2, ...» ft such that each cycle has at least r-h 1 elements. 

The number Sr(n9 k) is equal to the number of set partitions of 1, 2, . .., 
n consisting of exactly k blocks such that each block contains at least r + 1 
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The numb sr Sr n(l) is equal to the number of set partitions of 1, 2, , e ,s H 
such that each block has at least r + 1 elements. If we give a set partition 
with exactly j blocks a weight of yj\ then STi n (y) is the sum of the weights 
of all the set partitions of 1, 2, ..., n such that each block has at least 
v + 1 elements. 

3. HISTORY OF THE p-ASSOCIATED STIRLING NUMBERS 

The Stirling numbers of the first kind3 s(ns k), and of the second kind, 
S{n3 k)s were evidently first introduced in 1730 by James Stirling '[13, pp. 8, 
II], They are usually defined in the following way. 

n 

(3.1) (x)n = x(x - 1) . .. ^ r ~ n 4 * 1 ^ = 5 J s ^ n s j)̂ J"s 
J = 0 

n 
(3.2) xn = £ s ( n , o){x).. 

j=o 

It is not the purpose of this paper to review the history or well-known prop-
erties of the Stirling numbers; there are many good references, including [69 
Ch. 5], [10, Ch. 4], and [12, pp. 32-38 and Ch. 4]. We are using the notation 
of Riordan [12] for the Stirling numbers of the first and second kind. 

The numbers s^n, k) and S1(n5 k) were introduced in 1933-34 by Jordan 
[11] and Ward [17]- Using different notations, these authors defined ^(n, j) 
and ^(n, j) by means of 

k / \ 
(3.3) s(n, n - k) = (-1)* J^si (2k " *' k ' ^ U f c * - j ) s 

j = o \ J / 

(3.4) S(n, n - k) = J^S^lk - j, k - j ) ^ " . ^ 

The purpose of these definitions was to prove that s(n, n - fc)and£(n, n ~ k) 
are both polynomials in n of degree 2k, and also to show how s(n, n - &) and 
5(n, n - k) can be written as linear combinations of binomial coefficients. 
Formulas (3.3) and (3.4) can also be useful in determining s(ns n - k) and 
S(ns n•- k) when n is large and k is small. The generating functions (1.1) 
and (1.2) were not given in [ 11 ] or [ 17] . This approach to s1(n9 k) and S1(n9 k) 
is also discussed in [11, Ch. 4]. In [12, Ch. 4], the generating functions are 
given, and the combinatorial interpretations are thoroughly discussed. It is 
also shown that 

i+k, (3.5) (-l)n + *e(n, k) = ̂  [ ,)s1(n - j , k - j) . 

k k , v 

(3.6) S(n, k) = X)Q) 5i ( n " J° s fe ' n)s 

(3.7) si(w + 1, k) = nsj^in, k) + ns1(n ~ l5 k - 1), 

(3.8) 5x(w + 1, k) = kS1(ns k) + nS^n - 1, fc - 1). 
Applications for s1(n, k) and /S,1(n, fc) have been found; see [1], [4], and [5], 
for example. A good discussion of these numbers can also be found in [2], 

The p-associated Stirling number of the second kind, for arbitrary z>, was 
apparently first defined and used by Tate and Goen [15] in 1958. They made 
the following definition: 
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_ (-D*1 (K)A 

( 3 - 9 ) G ^ fe> = t -Df c" 'Zf c i , fc2 i . . . kr + 2>AlQ' 
where 

r 
A = A ( / c l 9 . . . , kr + 2) =n - Y*iki + 2> 

i - 0 

e - e a l 9 ..., kr+2) = n W)ki+z , 
i-0 • 

and the sum is over all ?c1, fc2 , ..., kr + 2 such that kx + k2 + ••• + kr + 2 = k9 
and 0 <_ /cz. <_ fc. For p = 0, (3.9) reduces to the familiar formula for S(n, k) : 

k . 

(3.10) G0(n9 k) = ^ r B " 1 ) k " J ' ( f ) ^ = 5 ( n' fe>' . 
j - o 

Now by induction we can show that Gr{n9 k) = Sr(n9 k) . It is true for p - 0; 
assume it is true for a fixed p. Then, by (1.2), we have 

' k 
X) kls

r + 1(n> W^rn/n! = I ]T ^ ' / j ! - ^ + 1 / ( P + 1) ! 
n = (r + 2)k V - r + 1 

£ = 0 \ j - r +1 / 

" Z £ (J)(-l>*"*[(r + D U ^ ^ K m D - ^ O n , i)ar"H 

By using (3.9) to rewrite Gr(rn9 i) and then comparing coefficients of xn
9 we 

have Gr + 1(n9 k) = 5r + 1(n, fe) . For example, we have 

(3.11) Sx(n, fc) = ^ r E ( - 1 ) ' ( j ) ^ ( m ) ( n ) ' " ( k " J')n"ra-

A formula equivalent to (3.11) was also proved by Carlitz [2], 
The r-associated Stirling numbers of the second kind have appeared in 

problems in [6, pp. 221-222] and [12, p. 102], Recently, Enneking and Ahuja 
[7] have used these numbers to extend earlier results of Uppuluri and Carpen-
ter [16] concerning the Bell numbers. In another recent paper the writer [9] 
has shown the relationship of Sr(n9 k) to the numbers Ar,n defined by 

(3.12) (x*M)( JV/j!) ^YfAVtnxn/nl. 
y-r / « = o 

The relationship is 
n 

(3.13) 4 r > n = J^ (-"rl^ j\n\Sr(n + rj9 j ) / in + PJ) !. 
j - i 

The number AliH is the nth Bernoulli number. 
Evidently, the P-associated Stirling numbers of.the first kind have not 

been studied, though they do appear in a problem in [6, pp. 256-257]. 

4. BASIC FORMULAS 

In [7] and [9] formulas for Sr(n9 k) and the polynomials defined by (1.4) 
and (1.6) were derived. The notation for Sv{n9 k) is dr(n9 k) in [7] and 
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b(r; ns k) in [9]. In this section we are concerned mainly with the analogous 
formulas for the r-associated numbers of the first kind. The following form-
ulas have been proved: 

(4 .1 ) Sr(n + 1, k) = kSr(n5 k) = Qsr(n - rs k - 1) , 
w i t h Sr(09 0) = 1, 

.. ukr 
(4-2) s*<n-»-Zm&j 

the sum over all compositions (ordered partitions) ul+u2+ • e ' + uk - n9 each 

(4.3) Srn(y) -f n':(iVyi (~€ S , .&), 
i = Q v / 

(4-*> 5,.1>nQ/) = L " ; f a ! - " p | ) V ^ . n - ^ ) . 

i = o * v y ' 

(4.5) ^ ( n , fe) - E •y-Kn2':)W) I gj(" ' J>' * " J'}' 
j =0 

W.6) Sr(n, fc) = E j - | ( w . ^ ) t
 sr-i(n ~ 3*, k - j) ,. 

<4-7) ^,n+i^) =/E(J)^,i(2/)-
It should be noted that there are misprints in formulas (5.14) and (5.16) of 
[9]3 which correspond to (4.7) and (4.4), respectively, in this paper. Also, 
in the table following (5.11) in [9], the value of g(69 2) is 10, not 0. We 
also note that the Tate-Goen formula (3.9) can be proved inductively by means 
of (4.6). 

We now look at the analogous formulas for sr(n, k) . First, we have the 
recurrence 

(4.8) sr(n + 1, k) = nsr(ns k) + (n)rsr(n - r, k - 1 ) , 

where in) T = n(n - 1) .. . (n - v + 1) and sp(Q9 0) = 1, sr(n9 0) = 0 if n + 0. 
We shall use a combinatorial argument to prove (4.8). In the permutations of 
n + 1 elements which have k cycles, each cycle containing at least v + 1 ele-
ments, enumerated by sr(n + 1, k), element n 4- 1 is in some p + 1 cycle or it 
is not. If it is not, it is inserted into one of the k cycles of n elements 
enumerated by sr(n9 k) , and this can be done in n ways. If it is, there are 
( ] ways to choose the other r elements of the v + 1 cycle, and since the 
smallest element must be first, there are r.\ ways the elements can be arranged 
in the cycle. Note that rl (^J = (ji)v . There are then n - r elements left to 
be arranged in k - 1 cycles. 

By comparing coefficients of xn on both sides of (1.1), we have 

(4.9) s(n5 k) = klu1u2 .,.. uk 

where the sum is over all compositions wx +.uz + «« » + uk = n9 each ui _> v + 1. 
This generalizes the formula for s(ns k) given in [10., p. 146, formula (5)]. 

Formulas analogous to (4.3)-(4.7) can be derived. From (1.3), we have 
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^srjn(2/)j;M/n! = expf y ^ ^ J7j') e*P(-yxr7r) 
« = 0 \ j* - r / 

n = 0 ' j- - o 

Comparing coefficients of a?", we have 

when fr(0) = 1 and for J > 0, 

(4.11) /p(rj) = (PJ)!/P(2P)(3P) ... (jV), 

that is, fv (rj) is the same as (PJ)! with every pth term divided out. With a 
similar argument, we have 

[n/r] 

(4-12) **-i.»<2/> " E L ' k W ^ ^ ^ - . j f e ) . 
j-o w / 

It follows from (1.5), (4.10), and (4.12) that 

k 
(4.13) sr(n9 k) = £ (~iy(")fr(^sr-i(n - rj9 k - j) ; 
and 

k . . 

(4.14) ^^(n, k) = ZXpj)J^( p j' ) S p ( n " PJ'5 fe " j)s j-o 

Equation (4.14) generalizes (3.5) and shows how to write sr_1(n9 k) as a linear 
combination of binomial coefficients. In fact it is not difficult to see from 
(4.14) and (4.5) that, for k > 0 and fixed v9 

(4.15) rmsr__1(rm + k9 m) = (rm + k) (rm + k - 1) ... mRk(m), 
and 
(4.16) (rl)mSr_1(rm + k9 m) = (rm + k) (rm + k - 1) ... mQk(m)9 

where R^(m) and Qk(m) are polynomials in 777 of degree k - 1. By differentiat-
ing (1.3) with respect to x and comparing coefficients of xn

9 we have 

n - r 

(4.17) s?)M + 1(i/) =^E( n )^ s^^ (^ )-
i = o 

If we define the numbers dT n by means of 

(4.18) (tf'/rM £>J'/j) = J2dr>nx\ 

then it follows from [9, formulas 4.11 and 4.12] that 

n 
(4.19) dP>n = £ (-DJ [/r Otf) (« + rj)„ ] "^p (« + iy, J) , 

•7 = 1 

(4.20) d ^ = J (-D'(} + })[/, W)(n + r ^ n ] " ^ , . ! ^ + itf, j). 
J = 1 ^ ' 

When r = 1 in (4.16), we have 
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(4 .21) -a?[ ln( l - x ) ] " 1 = £ dx x™9 
n = 0 

so t h a t dlt n = (-l)nbn3 where bn i s t h e B e r n o u l l i number of t h e second k ind 
[10 , pp . 265 -287] . Thus, by (4 .17) and ( 4 , 1 8 ) , we have 

n 

(4*22) bn = £ ( - l ) n + * [ ( n + AJ'Xfr + J> «?>» 

(4-23) bn = E ( - D * Q + } ) [ ( « + j O J ^ s C n + j , j ) . 

I t can a l s o be proved [ see 10, p . 267] t h a t 

n 
(4 .24) n!fcn = ] £ s ( w , fc)/(fc + 1 ) . 

fc = o 

We can compare formulas (4.22) ,. (4.23), and (4.24) to similar formulas involv-
ing the ordinary Bernoulli numbers and the Stirling numbers of the second kind 
[10, pp. 182, 219, and 599]. 

5. GENERALIZATION OF THE PAPER BY UPPULURI AND CARPENTER 

In [16] Uppuluri and Carpenter defined a sequence CQ , C. , C2 ... by means 
of 

(5.1) exp(l - ex) =^CdxJ/j\9 
j-o 

and they derived some formulas involving the C- and Bell numbers B19 B2, ..., 
defined by 

n 

In this section, we show how all the results of [16] can be extended by using 
(1.4) and (1.6). In Propositions 5.1-5.10, which correspond to Propositions 
1-10 in [16], we use the notation 

(5-3) S^n{y) = S„(y), 
so clearly Bn - Sn(l) and Cn = Sn(-l). We omit any proof which is obvious or 
which is analogous to the corresponding proof in [16]. 

00 

PAO position 5.1: sk(y) = ^"y^ymmk/ml» & = 0 , 1, 2 , . . . . 
m - 0 

VnopohiJlixm 5.2: Equat ion (1 .6 ) of t h i s pape r . 

Vflopo&AJxon 5.3: Equat ion (4 .7 ) of t h i s p a p e r . 
n 

VsiopotUlon 5.4: tfs^y) = £ ( - l ) n " 3 7 *.)Sd + 1(y) = ySn(y). 

Using P r o p o s i t i o n 5.4 and S±(y) = y, we can compute S2(y)5 . . . , Sn(y) f o r 
9 

^2(2/) = S1(y) + AS1(y) = 2/ + y2, 

small values of n. For example, AS^z/) = yS1(y) = y2
 s so 

and 
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£3Q/> =S2(y) +kS2(y) = S2(y) + A 2 ^ (y) + A ^ (y) 

= (y + y2) + (y1 + z / 3 ) + z/2 = y + 3y2 + yK 

i-y) = 0 , n = 1, 2 , . . . , and S0 (y) = 1. 
n / \ 

PJtapo^HUan 5 . 5 : £ ( ^ | S k Q / ) S n _ , 

n / \ 
?Hoipo*MM)vi 5 . 6 : £ ( ^ ) ^ - ( - 1 / ) 5 ' n + 1 - J - Q / ) = 2/» n = 0 9 1 , 2 , 

j - o ^ ' 

PKopoA£&L(m 5 . 7 : Same as P r o p o s i t i o n 5 . 6 . 

PsiopoAAjtion 5. St Let a^ = Si{y) III . Then 

(a) Sn<-2/> = (™Dnn! 

(-Dnn!^n, 

0 
ao 
a, 

0 
0 

an . . . 

0 
0 

0 

(b) ( - iVX(-y) =n<Y,(-Vkgn-k-iSk+1(y)/(k + i ) i . 
fc = 0 

Vsiopo&jjLLon 5 . 9 : 

sB+1(-*) = (-D' 

y 

y 

y 

I 

2/ 
22/ 

0 
1 

2/ 

0 . 
0 . 

1 . 

. . 0 

. . 0 

.. o 

(S) tt)» \nr 
In Proposition 5.9, the element in the £th row, jth column, for j <̂  

Tnopoiitixiyi 5.10: 

L(-y) = ( -D ' 

2/ 
y 

y/2 

1 
2/ 
y 

0 
2 
2/ 

0 . 
0 . 
3 . 

. . 0 

.. o 

. . 0 

y/nl yj(n- 1) ! 2//0! 

In Proposition 5.10, the element in the ith row, jth column,, for J <_ £, is 
yld - j)!. 

The proof of Proposition 10 in [16] is not given. A reference is given 
to a formula of Ginsburg [8] for the Bell numbers, but unfortunately Ginsburg's 
proof is obscure. Proposition 5.10 is easily proved, however, by multiplying 
the k + 1st row of the determinant in Proposition 5.9 by l/kl and the k + 1st 
column by k\ (k = 1, 2, ..., n). 

The motivation given in [16] for studying the numbers Cj defined by (5.1) 
is the following: Define B^k^ by 



1980] ASSOCIATED STIRLING NUMBERS 

(5.3) Bn<*> -J^j+Stn, j). 
Then J'= x 

5n( 1 ) = £ n + 1 ~ Bn9 
Bn2 = 5 n + 2 - 2Bn+1, 

and these equations lead to a search for a general expression for 5^) ±n 
of the Bell numbers 5 , 5 n+i9 * e ' 5 Bn + k° It: i s sta-ted9 though not ac 
proved, that 

We now generalize this result by defining s£® (y) by 

(5.5) 

and showing that 

(5.6) 

For example9 

s„w(y) -2J^ £ 
J = I 

S^(y) = 5n+1(y) - ySn(j/), 

S{
n
2) (y) = 5n + 2(j/) - 2ySn + 1(y) + (y2 - y)Sn(y). 

To prove (5.6), we start with (1,4) with r = 0. Differentiating n 
with respect to x9 we have 

00 

(5.7) D(n)exVy(e*~ 1) = £ Sn+j(y)x<Vj! . 
j - o 

Now consider the numbers q(m) (2/) defined by 

(5.8) (exp 2/(1 - e*))Z)(n) exp 2/(0* - 1) = ]T q^} (y)xm/ml. 
m = 0 

It follows from (1.4), (5.7), and (5.8) that 

k 

^k)W =t*sA^sn+k-j(y)(j)-
j-0 

Now we show by induction that 

(5.9) q^k)(y) = S<tkHy). 
For n = 1, we have, from (5.8), 

ye* =Y,q(m)(y)xm/ml, 
m = 0 

SO 

q <*> (y) = y = S™ (y). 
Assume (5.9) holds for a fixed n, and also assume 

n 
D(n) exp z/(e* - 1) = (exp z/(e* - 1)) ]T exiS(n9 i)yi. 
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Then we have 

n 
(5.10) £(n+1)exp y(ex- 1) = (exp y(e*~ l))^exi{iS{n% i) + S(n9 i - l))y* 

i = \ 
n+l 

= (exp y(ex~ l))^\xiS{n + 1, i)yl. 
i = l 

Multiplying both sides of (5.10) by exp z/(l - ex) and comparing coefficients 
of x, we see that q^\\{y) = S^\(y) . 

6. GENERALIZATION OF THE PAPER BY ENNEKING AND AHUJA 

In [7] Enneking and Ahuja defined a generalized Bell number by 

n 
(6.1) Br(n) = J^Sr(ns j) , 

j=o 

and they were able to generalize some of the formulas in [16]. Note that 

Br(n) = £>,„(1). 

By considering SriU(y)s we can extend each of the twelve properties in [7]; 
Properties 6.1-6.12 in this paper correspond to Properties 1-12 in [7]. We 
omit any proof which is obvious or is analogous to the corresponding proof in 
[7]. 

Vfiop&vty 6 A 

Equat ion (1 .4 ) of t h i s pape r . 

Equat ion (4 .7 ) of t h i s p a p e r . 

VtlopeAty 6.3: Equat ion (4 .3 ) of t h i s p a p e r . 

VKopQXtvf 6At SliH(y) = e~yY^ym(rn ~ y)n/ml. 
m = 0 

VKOO^1 We have , from ( 1 . 4 ) , 

J^Slin(y)xn/nl = e'Ve'vyexpiye*) = e'v( ^{-y)ixi/i ! j | Y^ymexm/ml 
n = 0 ' \ i = 0 / V = 0 

CO °° 

7fl=0 n=0 

and Property 6.4 is proved when we compare coefficients of ̂ n. 
For Property 6.5, we need the following definition of Hr(x)i 

(6.2) exp y(ex - 1 - x - •-• - xr/rl) = (exp y(ex - l))#P0u), 

where 

(6.3) Hr(x) =Yjhr,i(y)xi/il9 P_> 1. 
i = 0 

Throughout the remainder of this paper we will also continue to use the nota-
tion of (5.3). 
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Ptwp&vty 6.5: Sr^n{y) = J ) ( * ) hr, i(y)Sn_i(y) , where 

K, n + l(2/> = -yY^\V\h*> n-j(y)> K, n W = ° f o r P -> ° * ^ r , 0 <2/> = * • 
j - o W 

To generalize (5,5)3 we make the following definition: 

(6.4) S^n{y) =YjmkSr(.n, m)ym. 
m = l 

k / \ 

PsiopeAty 6.7: S^Hy) = ^ > ( i / ) - i / £ ( J ) S™ (y). 
3-0 \ J / 

Now we want to generalize (5.6); that iss we want to express S^ n (y) in 
terms of the Sr n (y) . For example^ 

s^n(y) =sr,n+1(y) - ( ; ) ^ , . n - , ( 2 / ) . 

<2)»(*> - *,. n+2(2/) - » [ ( * : l ) + ( ; ) ] * , n+1_,.&> + H n ; P ) ( ; ) ^ , n - 2 ^ ) 

Ptopesuty 6.8: S^n(y) = ̂  5Z a-ij (rZs fe> ̂ n ^ - i - j ^ ) ' w h e r e 

i - 0 J = 0 

an_n(w, fc9 r ) = 1, ai<7-(n5 /c, 2?) = 0 i f j = 0 and i > 0S 

r 
m = k - i + j 

and 

a . , ( R 1 ) : + l ] r ) = a i j ( n l l , l c 1 r ) - j h £ a . + m _ , _ 1 ; ^ (n - r, m, r ) . 
\ / m=k - i + .1" 

When p = 0S we have 

(6.5) E a i j ( n s fe» 0 ) = (iW~^)s 

independent of n fo r £ = 1, 29 . . . 9 fc. L e t t i n g v = 0 in P r o p e r t y 6 . 8 3 l e t t i n g 
i = fe + 19 and summing on j , we have 

m = 0 x ' 

which ag ree s wi th P r o p o s i t i o n 5 . 3 . 
Now l e t 

(6.6) W^Uy) = Y,U)kST{n9 j)yi. 
j = . o 

We shall use the notation W0
{ „(z/) = W^k)(y). 

TMf**** 6.9: Wi^(y) = Wp
W

n + 1 (y) - W^n(y)-tyy(**<* «>,(*> +W<?H_r<y)). 
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PJiopeAtq 6.10: w^ + 1Ky) = W^\(y) - (fc + y)W?} (y) - ykW^'1^ (y). 

fa 

VAopoAty 6.11: W™Xy.) = £ a ? ( f c , * ' 2/>Sn + *-f(2/> » 
£ = 0 

where the w(/c, i , z/) s a t i s f y w(/c, 0 , y) = 1 and 

w(fe + 1, i , 2/) = w(k9 i9 y) - (k +• y)w(k, i - 1, z/) - z/fcw(fe - 1, i - 25 z/). 

For example, 

^ ( y ) = 5 n + 1 ( 2 / ) - y s „ ( y ) , 
w{

n
2)(y) - £'K+2(2/) - (21/ + D5M+1(y) + y25„(i/). 

It is noted in [7], without proof, that for y = 1 the w(k9 £, z/) are the 
coefficients of a special case of the Poisson-Charlier polynomials Pn(x) [14, 
p. 34]'.. These polynomials can be defined by 

k 
(6.7) Pk(x) =Y,p(k9 i9 u)xk'\ 

i~o 

(6.8) p(k9 i9 u) = £ (-Dd())u*'~ks0c - j\ k - i). 
j-o V J / 

(This definition is slightly different from the one given by Szego [14]«) We 
now show that when u = y, 

(6.9) w(fe, is y) = ykp(k9 i9 y). 
We prove (6.9) by showing that ykp(k9 i s y) satisfies the same recurrence 

as w(k9 i9 y) . For convenience, in the proof we use the notation p(k9 i) = 
ykp(k9 i9 y) . Then we have p(k9 0) = 1 and 

p(k + 1, i) = Y,(-l)4k "t * W + 1 - j, fc + 1 - i)y 
j - o V d I 

3 

[s(k-j9 k- i) - (fc- j)s(k- j9k + 1 *• £)]z/ 

= p(k, i) - £ (-1)^(5) s(fc - j, fc + 1 - i)z/J'+1 

Replac ing f . J b y ( . ) - ( . _ - ) , we have 

p(fc + 15 i) = p(fc, i ) - z/p(fc, i ~ 1) - fcp(fc, i - 1) - z/fcp(fc - 1, i - 2 ) , 
This completes the proof of (6.9). 

(k) 
Now we want to express WPt n (y) in terms of the Sr . (y). For example 

^l(y) = srtn+1(y) - (n
r)ysr,n.r(y), 

+ \r)y ~r jy2sr, n-irty')-

0 
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* i 
Vtwywty 6.12: w«>(y) = £ ^ ^ ( n , fc, 2>)Sr „ + f c _ w , ( j / - ) , 

i-0 j-0 

where the Z>„ (w, fc, r) satisfy b0 0 (n, k, r) = 1, ifc.(n, fc, r) = 0 for j = 09 
. .., k - 1, and J 

i^. (n, fc + 1, r) = £ - (n + 1, fc, r) - ^ . ^ .(n3 ks r) 

- ^)2/[fci-ifj-i(w - **» fe, ̂ ) + ^ i - 2 , j - i ( n " r> k ~ l s p ) ] e 
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