Thus, by our above argument, if $\alpha(b-1, b, p) \equiv 0(\bmod 2)$, then

$$
\alpha(b-1, b, p)=\mu(b-1, b, p), \text { and } \beta(b-1, b, p)=1
$$

If $\alpha(b-1, b, p) \equiv 1(\bmod 2)$, then

$$
\mu(b-1, b, p)=2 \alpha(b-1, b, p), \text { and } \beta(b-1, b, p)=2
$$

The results of parts (i)-(iii) now follows.
(iv)-(vii) These follow from Theorems 9 and 10.
(viii) This follows from Theorems 11 and 12.

REFERENCES

1. Robert P. Backstrom. "On the Determination of the Zeros of the Fibonacci Sequence." The Fibonacci Quarterly 4, No. 4 (1966):313-322.
2. R.D. Carmichael. "On the Numerical Factors of the Arithmetic Forms $\alpha^{n}+$ β^{n}." Annals of Mathematics, 2nd Ser. 15 (1913):30-70.
3. John H. Halton. "On the Divisibility Properties of Fibonacci Numbers." The Fibonacci Quarterly 4, No. 3 (1966):217-240.
4. D. H. Lehmer. "An Extended Theory of Lucas' Functions." Annals of Mathematics, 2nd Ser. 31 (1930):419-448.
5. Emma Lehmer. "On the Quadratic Character of the Fibonacci Root." The Fibonacci Quarterty 4, No. 2 (1966):135-138.
6. Emma Lehmer. "On the Quadratic Character of Some Quadratic Surds." Journat für die Reine und Angewandte Mathematik 250 (1971):42-48.
7. Emma Lehmer. "On Some Special Quartic Reciprocity Laws." Acta Arithmetica 21 (1972):367-377.
8. Edouard Lucas. "Théorie des fonctions numériques simplement périodiques." American Journal of Mathematics 1 (1878):184-240, 289-321.
9. D. W. Robinson. "The Fibonacci Matrix Modulo m." The Fibonacci Quarterly 1, No. 1 (1963):29-36.
10. Lawrence Somer. "Which Second-Order Recurrences Have A1most A11 Primes as Divisors?" The Fibonacci Quarterly 17, No. 2 (1979):111-116.
11. John Vinson. "The Relation of the Period Modulo m to the Rank of Apparition of m in the Fibonacci Sequence." The Fibonacci Quarterly 1, No. 1 (1963):37-45.
12. D. D. Wall. "Fibonacci Series Modulo m." American Mathematical Monthly 67 (1960):525-532.
13. Morgan Ward. "The Prime Divisors of Fibonacci Numbers." Pacific Jourmal of Mathematics 11 (1961):379-386.
14. 0. Wyler. "On Second-Order Recurrences." American Mathematical Monthly 72 (1965):500-506.

MIXING PROPERTIES OF MIXED CHEBYSHEV POLYNOMIALS

CLARK KIMBERLING
University of Evansville, Evansville, Indiana 47702
The Chebyshev polynomials of the first kind, defined recursively by
$t_{0}(x)=1, t_{1}(x)=x, t_{n}(x)=2 x t_{n-1}(x)-t_{n-2}(x)$ for $n=2,3, \ldots$,
or equivalently, by

$$
t_{n}(x)=\cos \left(n \cos ^{-1} x\right) \text { for } n=0,1, \ldots,
$$

commute with one another under composition; that is

$$
t_{m}\left(t_{n}(x)\right)=t_{n}\left(t_{m}(x)\right)
$$

In [1], Adler and Rivlin use this well-known fact to prove that in an appropriate measure-theoretic setting the mappings t_{1}, t_{2}, \ldots are measure-preserving and the sequence $\left\{t_{1}, t_{2}, \ldots\right\}$ is strongly mixing. In another setting, Johnson and Sklar [2] obtain related results. The purpose of the present note is to establish results analogous to those in [1] for sequences involving not only t_{n} 's but also the Chebyshev polynomials of the second kind; these are defined recursively by

$$
u_{0}(x)=1, u_{1}(x)=2 x, u_{n}(x)=2 x u_{n-1}(x)=u_{n-2}(x) \text { for } n=2,3, \ldots,
$$

or equivalently, by

$$
u_{n}(x)=\frac{\sin \left[(n+1) \cos ^{-1} x\right]}{\sqrt{1-x^{2}}} \text { for } n=0,1, \ldots .
$$

Concerning compositions of Chebyshev polynomials of both kinds, we have the following lemma from [3], where a trigonometric proof may be found.

Lemma 1: Let $\left\{t_{0}, t_{1}, \ldots\right\}$ and $\left\{u_{0}, u_{1}, \ldots\right\}$ be the sequences of Chebyshev polynomials of the first and second kinds, respectively. Put $\bar{u}_{-1}(x) \equiv 0$ and define

$$
\bar{u}_{n}(x)=u_{n}(x) \sqrt{1-x^{2}} \text { for } n=0,1, \ldots .
$$

Then for nonnegative m and n,

$$
\begin{gather*}
t_{m}\left(t_{n}\right)=t_{m n}, \tag{1}\\
\bar{u}_{m}\left(t_{n}\right)=\bar{u}_{m n+n-1}, \tag{2}\\
t_{m}\left(\bar{u}_{n}\right)= \begin{cases}(-1)^{\frac{m}{2}} t_{m n+n} & \text { for even } m \\
(-1)^{\frac{m-1}{2}} \bar{u}_{m n+m-1} & \text { for odd } m,\end{cases} \tag{3}\\
\bar{u}_{m}\left(\bar{u}_{n}\right)= \begin{cases}(-1)^{\frac{m}{2}} t_{(m+1)(n+1)} & \text { for even } m \\
(-1)^{\frac{m-1}{2}} \bar{u}_{m n+m+n} & \text { for odd } m .\end{cases} \tag{4}
\end{gather*}
$$

We introduce some notation:
$I=$ the closed interval $[-1,1]$
$I^{\prime}=$ the closed interval $[0, \pi]$
$B=$ the family of Borel subsets of I
$Q^{\prime}=$ the family of Borel subsets of I^{\prime}
$\lambda=$ Legesgue measure on Φ
$\lambda^{\prime}=$ Lebesgue measure on Φ^{\prime}
Let μ be the measure defined on B by the Lebesgue integral

$$
\mu(B)=\frac{2}{\pi} \int_{B} \frac{d x}{\sqrt{1-x^{2}}}, B \in \Phi .
$$

Riv1in [4] proves that each t_{n} for $n \geq 1$ preserves the measure μ; that is, the inverse mapping t_{n}^{-1}, which is an n-valued mapping (except at ± 1) from I^{\prime} onto I, satisfies

$$
\mu\left(t_{n}^{-1}(B)\right)=\mu(B), B \varepsilon \subset .
$$

Using the same method of proof, we establish the following lemma.
Lemma 2a: Let $\bar{u}_{n}=u_{n}(x) \sqrt{1-x^{2}}$ for $n=0,1, \ldots$. For odd n, the mapping \bar{u}_{n} preserves the measure μ on B.

Proof: Let ϕ be the one-to-one measurable mapping of I onto I^{\prime} defined by

$$
\phi(x)=\theta=\cos ^{-1} x,
$$

and put $v_{n}=\phi\left(\bar{u}_{n}\left(\phi^{-1}\right)\right)$. Then, for odd n and

$$
\frac{(2 k+1) \pi}{2(n+1)} \leq \theta \leq \frac{(2 k+3) \pi}{2(n+1)}, k=0,1, \ldots, n-1,
$$

we find

$$
v_{n}(\theta)= \begin{cases}-(n+1) \theta+\frac{\pi}{2}, & 0 \leq \theta \leq \frac{\pi}{2(n+1)} \\ (n+1) \theta-\frac{2 k+1}{2} \pi, & \text { even } k \\ -(n+1) \theta+\frac{2 k+3}{2} \pi, & \text { odd } k \\ -(n+1) \theta+\frac{2 n+3}{2} \pi, & \frac{(2 n+1) \pi}{2(n+1)} \leq \theta \leq \pi\end{cases}
$$

An open subinterval of $[0, \pi / 2]$ or $[\pi / 2, \pi]$ having length ℓ is the image under v_{n} of $n+1$ subintervals of I^{\prime} (on the horizontal axis in Figure 1) in case n is odd, where each of these subintervals has length $\ell /(n+1)$. It follows that the mapping v_{n} preserves the measure λ^{\prime}. Now, if $-1 \leq \alpha<b<1$, then

$$
\int_{a}^{b} \frac{d x}{\sqrt{1-x^{2}}}=\int_{\phi(b)}^{\phi(a)} d \theta
$$

so that $\mu(B)=\frac{2}{\pi} \lambda^{\prime}(\phi(B))$ for $B \varepsilon \Phi$. Consequently (omitting parentheses), $\mu\left(\bar{u}_{n}^{-1}(B)\right)=\frac{2}{\pi} \lambda^{\prime}\left(\phi \bar{u}_{n}^{-1} B\right)=\frac{2}{\pi} \lambda^{\prime}\left(\phi \bar{u}_{n}^{-1} \phi^{-1} \phi B\right)=\frac{2}{\pi} \lambda^{\prime}\left(v_{n}^{-1} \phi B\right)=\frac{2}{\pi} \lambda^{\prime}(\phi B)=\mu(B)$.

Fig. 1. v_{3} preserves λ^{\prime} on $[0, \pi]$.

Fig. 2. v_{4} preserves λ^{\prime} on $\left[0, \frac{4 \pi}{5}\right]$.

For even n, the result is not so simple, since in this case v_{n} fails to preserve λ^{\prime} on all of I^{\prime}. However, one may prove the following lemma with an argument similar to that just given.
Lemma 2b: Let $\bar{u}_{n}(x)=u_{n}(x) \sqrt{1-x^{2}}$ for $n=0,1, \ldots$. For even n, the mapping \bar{u}_{n} preserves the restriction of the measure μ to the family of Borel sets of the closed interval $\left[\cos ^{-1} \frac{n \pi}{n+1}, 1\right]$. (See Figure 2.)

Turning now to orthogonality of Chebyshev polynomials of both kinds, 1et $L^{2}(I, B, \mu)$ denote the set of square μ-integrable functions f which are $\mu-$ measurable on B :

$$
\int_{-1}^{1} f^{2}(x) d \mu(x)<\infty .
$$

For f and g in $L^{2}(I, Q, \mu)$, let $\langle f, g\rangle$ denote the inner product

$$
\frac{2}{\pi} \int_{-1}^{1} f(x) g(x) d \mu(x)
$$

and let $\|f\|$ denote the norm $\langle f, f\rangle^{1 / 2}$.
Lemma 3: Let $\left\{t_{0}, t_{1}, \ldots\right\}$ and $\left\{u_{0}, u_{1}, \ldots\right\}$ be the sequences of Chebyshev polynomials of the first and second kinds, respectively. Put

$$
\bar{u}_{n}(x)=u_{n}(x) \sqrt{1-x^{2}} \text { for } n=0,1, \ldots .
$$

Then for nonnegative m and n,

$$
\begin{align*}
& \left\langle t_{m}, t_{n}\right\rangle= \begin{cases}0 & m \neq n \\
1 & m=n \neq 0 \\
2 & m=n=0\end{cases} \tag{5}\\
& \left\langle\bar{u}_{m}, \bar{u}_{n}\right\rangle= \begin{cases}0 & m \neq n \\
1 & m=n\end{cases} \tag{6}\\
& \left\langle\bar{u}_{m}, t_{n}\right\rangle= \begin{cases}0 & m+n \text { odd } \\
\frac{4(m+1)}{\pi\left[(m+1)^{2}-n^{2}\right]} & m+n \text { even }\end{cases} \tag{7}
\end{align*}
$$

Proot: Equations (5) and (6) are well known. Proof of (7) follows from

$$
\int_{0}^{\pi} \sin (m+1) \theta \cos n \theta d \theta=\frac{1}{2} \int_{0}^{\pi}[\sin (m+1-n) \theta+\sin (m+1+n) \theta] d \theta
$$

where $\cos \theta=x$.
Lemma 3 shows that the sequences

$$
\left\{\frac{1}{\sqrt{2}} t_{0}, t_{1}, t_{2}, \ldots\right\} \text { and }\left\{\bar{u}_{0}, \bar{u}_{1}, \bar{u}_{2}, \ldots\right\}
$$

are orthonormal over I, a well-known fact. It is well known, a fortiori, that these are complete orthonormal sets in the space $L^{2}(I, \Phi, \mu)$; i.e., for each f in $L^{2}(I, \Phi, \mu)$ and $\varepsilon>0$, there exists a finite linear combination

$$
s_{n}(x)=\sum_{k=0}^{n} a_{k} t_{k}(x)
$$

such that $\left\|f-s_{n}\right\|<\varepsilon$ [and similarly for the $\bar{u}_{k}(x)$'s].
Now let $\left\{F_{n}\right\}=\left\{F_{0}, F_{1}, F_{2}, \ldots\right\}$ denote the sequence

$$
\frac{1}{\sqrt{2}} t_{0}, \bar{u}_{1}, t_{2}, \bar{u}_{3}, \ldots
$$

and let $\left\{G_{n}\right\}=\left\{G_{0}, G_{1}, G_{2}, \ldots\right\}$ denote the sequence

$$
\left\{\bar{u}_{0}, t_{1}, \bar{u}_{2}, t_{3}, \ldots\right\}
$$

These are orthonormal sequences by Lemma 3. For f in $L^{2}(I, \mathcal{B}, \mu)$, we define the F-Chebyshev series for f to be the series

$$
\sum_{k=0}^{\infty} f_{k} F_{k}(x)
$$

where the coefficients f_{0}, f_{1}, \ldots are given by $f_{k}=\left\langle f, F_{k}\right\rangle$. Similarly, the G-Chebyshev series for given g in $L^{2}(I, \Phi, \mu)$ is defined by

$$
\sum_{k=0}^{\infty} g_{k} G_{k}(x),
$$

where $g_{k}=\left\langle g, G_{k}\right\rangle$ for $k=0,1, \ldots$.
Lemma 4: If n is an odd positive integer and $\varepsilon>0$, then there exists a sum of the form

$$
s_{m}(x)=\sum_{k=0}^{m} a_{2 k+1} \bar{u}_{2 k+1}(x)
$$

such that $\left\|t_{n}-s_{m}\right\|<\varepsilon$. If n is an even nonnegative integer and $\varepsilon>0$, then there exists a sum of the form

$$
s_{m}(x)=\sum_{k=0}^{m} a_{2 k} t_{2 k}
$$

such that $\left\|\bar{u}_{n}-s_{m}\right\|<\varepsilon$.
Proof: Suppose that n is an odd positive integer. It suffices, by the RieszFischer Theorem (see [5], p. 127) to show that the sequence $\tau_{2 k+1}=\left\langle t_{n}, \bar{u}_{2 k+1}\right\rangle$ satisfies

$$
\sum_{k=0}^{\infty} \tau_{2 k+1}^{2}<\infty .
$$

This is clearly the case, since, by (7),

$$
\tau_{2 k+1}=\frac{8}{\pi} \frac{k+1}{\left[(2 k+2)^{2}-n^{2}\right]}
$$

Similarly, for even nonnegative n and $\tau_{2 k}=\left\langle\bar{u}_{n}, t_{2 k}\right\rangle$, we have

$$
\tau_{2 k}=\frac{4}{\pi} \frac{n+1}{(n+1)^{2}-4 k^{2}}
$$

Theorem 1: The orthonormal sequences $\left\{F_{n}\right\}$ and $\left\{G_{n}\right\}$ for $n=0,1, \ldots$ are complete in $L^{2}(I, \Phi, \mu)$.
Proo6: We deal first with $\left\{F_{n}\right\}$. Suppose $f \varepsilon L^{2}(I, \Phi, \mu)$ and $\varepsilon>0$. Since

$$
\left\{\frac{1}{\sqrt{2}} t_{0}, t_{1}, t_{2}, \cdots\right\}
$$

is a complete orthonormal sequence in $L^{2}(I, \mathcal{B}, \mu)$, we choose odd m and numbers $a_{0}, a_{1}, \ldots, a_{m}$ satisfying

$$
\left\|f-\sum_{k=0}^{m} a_{k} t_{k}\right\|<\varepsilon / 2 .
$$

By Lemma 4 , there exist sums $s_{k}=c_{k 1} \bar{u}_{1}+c_{k 3} \bar{u}_{3}+\cdots+c_{k q_{k}} \bar{u}_{q_{k}}$ such that
$\left\|a_{k} t_{k}-a_{k} s_{k}\right\|<\varepsilon / m$ for $k=1,3,5, \ldots, m$.
Let $Q=\max \left\{q_{k}: k=1,3,5, \ldots, m\right\}$ and put

$$
q= \begin{cases}Q & \text { if } Q \text { is odd } \\ Q+1 & \text { if } Q \text { is even }\end{cases}
$$

Put $c_{k p}=0$ for $q_{k}<p \leq q, k=1,3,5, \ldots, m$. Next, let

$$
b_{j}= \begin{cases}a_{1} c_{1 j}+a_{3} c_{3 j}+\cdots+a_{m} c_{m j} & \text { for } j=1,3,5, \ldots, q \\ a_{j} & \text { for even } j<m \\ 0 & \text { for even } j>m\end{cases}
$$

Then,

$$
\begin{aligned}
\left\|f-\left(b_{0} t_{0}+b_{1} \bar{u}_{1}+\cdots+b_{q} \bar{u}_{q}\right)\right\| & \leq\left\|f-b_{0} t_{0}-a_{1} t_{1}-b_{2} t_{2}-a_{3} t_{3}-\cdots-a_{m} t_{m}\right\| \\
& +\left\|a_{1} t_{1}-a_{1}\left(c_{11} \bar{u}_{1}+\cdots+c_{1 q} \bar{u}_{q}\right)\right\| \\
& +\left\|a_{3} t_{3}-a_{3}\left(c_{31} \bar{u}_{1}+\cdots+c_{3 q} \bar{u}_{q}\right)\right\|+\cdots \\
& +\left\|a_{m} t_{m}-a_{m}\left(c_{m 1} \bar{u}_{1}+\cdots+c_{m q} \bar{u}_{q}\right)\right\|<\varepsilon
\end{aligned}
$$

This proves completeness of the sequence $\left\{F_{n}\right\}$. The proof for $\left\{G_{n}\right\}$ is quite similar.

We wish to use all the foregoing results to prove that the sequences of mappings $\left\{F_{n}^{-1}\right\},\left\{G_{n}^{-1}\right\}$, and $\left\{\bar{u}_{n}^{-1}\right\}$, when applied to any B in \mathcal{B}, increasingly homogenize or mix B throughout I. This vague description is made precise for a μ-preserving sequence of mappings $\left\{\tau_{n}\right\}$ by the notion that $\left\{\tau_{n}\right\}$ is a strongly mixing sequence with respect to μ if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu\left[\left(\tau_{n}^{-I} A\right) \cap B\right]=\frac{\mu(A) \mu(B)}{\mu(I)} \tag{8}
\end{equation*}
$$

for all A and B in B.
Theorem 2: The sequence of mappings $\left\{F_{1}, F_{2}, \ldots\right\}$ is strongly mixing in $\overline{L^{2}(I, \mathcal{B}, \mu)}$ with respect to the measure μ.

Proof: To establish (8), it suffices to prove

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle f\left(F_{n}\right), g\right\rangle=\frac{1}{2}\langle f, 1\rangle\langle g, 1\rangle \tag{9}
\end{equation*}
$$

for all f and g in $L^{2}(I, \Phi, \mu)$, since (9) is merely a restatement of (8) in case f is the characteristic function of A and g is the characteristic function of B. [That is, $f(x)=1$ for $x \in A$ and $f(x)=0$ for $x \notin A$; similarly for g and B.$] First, assume f$ and g are terms of the sequence $\left\{F_{0}, F_{1}, \ldots\right\}$. Then for some $j \geq 0$ and $k \geq 0$, with $n \geq 1$, Lemmas 1 and 3 show that

$$
\begin{aligned}
& \left\langle f\left(F_{n}\right), g\right\rangle=\left\langle F_{j}\left(F_{n}\right), F_{k}\right\rangle \\
& = \begin{cases}\left\langle t_{j n}, F_{k}\right\rangle & j \text { even, } n \text { even, } j \neq 0 \\
\left\langle t_{0} / \sqrt{2}, F_{k}\right\rangle & j=0 \\
(-1)^{j / 2}\left\langle t_{j n+j,}, F_{k}\right\rangle & j \text { even, } n \text { odd, } j \neq 0 \\
\left\langle\bar{u}_{j n+n-1}, F_{k}\right\rangle & j \text { odd, } n \text { even } \\
(-1)^{\frac{j-1}{2}\left\langle\bar{u}_{j n+j+n}, F_{k}\right\rangle} & j \text { odd, } n \text { odd }\end{cases} \\
& =\left\{\begin{array}{lll}
1 & 0 \neq k=j n, & j \text { even, } n \text { even } \\
\sqrt{2} & 0=j=k & j \text { even, } n \text { odd } \\
(-1)^{j / 2} & k=(j+1) n, & j \text { 立 } \\
(-1)^{\frac{j-1}{2}} & k=(j+1) n+j, j \text { odd, } n \text { odd } \\
0 & \text { otherwise } &
\end{array}\right.
\end{aligned}
$$

Thus,

$$
\left.\lim _{n \rightarrow \infty}\left\langle f\left(F_{n}\right), g\right\rangle=0 \text { for } j\right\rangle 0,
$$

and in this case (9) clearly holds. If $j=0$, then (9) is satisfied by

$$
\left\langle f\left(F_{n}\right), g\right\rangle=1 \text { for all } n \geq 1
$$

We have shown so far that (9) holds if f and g are both terms of the sequence $\left\{F_{0}, F_{1}, \ldots\right\}$. We continue now as in Rivlin [4, p. 171]: Suppose f and g are any functions in $L^{2}(I, \Phi, \mu)$ and let $\varepsilon>0$. By Theorem 1 , there exist finite linear combinations u and v of the mappings F_{n} such that

$$
\begin{equation*}
\|f-u\|<\varepsilon^{2} \quad \text { and } \quad\|g-v\|<\varepsilon^{2} . \tag{10}
\end{equation*}
$$

We write

$$
\begin{aligned}
C= & \left\langle f\left(F_{n}\right), g\right\rangle-\frac{1}{2}\langle f, 1\rangle\langle g, 1\rangle \\
= & {\left[\left\langle f\left(F_{n}\right)-u\left(F_{n}\right), g-v\right\rangle+\left\langle v, f\left(F_{n}\right)-u\left(F_{n}\right)\right\rangle+\left\langle u\left(F_{n}\right), g-v\right\rangle\right]+} \\
& {\left[\left\langle u\left(F_{n}\right), v\right\rangle-\frac{1}{2}\langle u, 1\rangle\langle v, 1\rangle\right]+\left[\frac{1}{2}\langle u, 1\rangle\langle v, 1\rangle-\frac{1}{2}\langle f, 1\rangle\langle g, 1\rangle\right] }
\end{aligned}
$$

$$
=[J]+[K]+[L]
$$

Since F_{n} is measure perserving,

$$
\left\|f\left(F_{n}\right)-u\left(F_{n}\right)\right\|=\|f-u\| \text { and }\left\|u\left(F_{n}\right)\right\|=\|u\|
$$

(See, for example, [4, p. 169].) Thus, the Schwarz inequality with (10) shows that $|J|<j \varepsilon$ for some constant $j>0$. For large enough $n,|K|<\varepsilon$ since the theorem is already proved for u and v. Now
$L=\frac{1}{2}[\langle f-u, 1\rangle\langle g-v, 1\rangle-\langle g, 1\rangle\langle f-u, 1\rangle-\langle f, 1\rangle\langle g-v, 1\rangle]$,
so that $|L|<\ell \varepsilon$ for some constant $\ell>0$, again by the Schwarz inequality and (10). Thus $|C|<(1+j+\ell) \varepsilon$ for large enough n, and this proves the theorem.

Is the sequence $\left\{G_{1}, G_{2}, \ldots\right\}$ strongly mixing, too? This question is presumptuous, since "strongly mixing" has been defined only for measure-preserving (on I) mappings. However, while no single G_{n} is measure-preserving on all of I, Lemma 2 b shows G_{n} to be measure-preserving on

$$
\left[\cos ^{-1} \frac{n \pi}{n+1}, 1\right],
$$

and since "strongly mixing" involves $\lim _{n \rightarrow \infty}$, we are led to the following definition:

A sequence of mappings $\left\{\tau_{n}\right\}$, not necessarily measure-preserving on I,
is limit-strongly mixing if (8) holds for all f and g in $L^{2}(I, \mathbb{Q}, \mu)$.
One may now prove the following two theorems, using Lemma $2 b$ and a modification of the proof of Theorem 2.
Theorem 3: The sequence $\left\{G_{1}, G_{2}, \ldots\right\}$ is limit-strongly mixing in $L^{2}(I, \mathbb{B}, \mu)$ with respect to the measure μ.
Theroem 4: The sequence $\left\{\bar{u}_{1}, \bar{u}_{2}, \ldots\right\}$ is limit-strongly mixing in $L^{2}(I, \Phi, \mu)$ with respect to the measure μ.

Finally, we note that the mapping F_{n}, for $n \geq 1$, is strongly mixing and, therefore, ergodic in the sense given in [4, p. 169]. In the limiting sense of Theorems 3 and 4 above, the same properties hold for the mappings G_{n} and \bar{u}_{n} for $n \geq 1$.

REFERENCES

1．R．L．Adler \＆T．J．Rivlin．＂Ergodic and Mixing Properties of Chebyshev Polynomials．＂Proc．Amer．Math．Soc． 15 （1964）：794－796．
2．P．Johnson \＆A．Sklar．＂Recurrence and Dispersion under Iteration of Čebyšev Polynomials．＂To appear．
3．C．H．Kimberling．＂Four Composition Identities for Chebyshev Polynomials．＂ This issue，pp．353－369．
4．T．J．Rivlin．The Chebyshev Polynomials．New York：Wiley， 1974.
5．A．Zygmund．Trigonometric Series．I．Cambridge：Cambridge Univ．Press， 1969.
＊皮皮来

on the convergence of iterated exponentiation－I

MICHAEL CREUTZ and R．M．STERNHEIMER＊
Brookhaven National Laboratory，Upton，NY 11973
We have investigated the properties of the function $f(x)=x^{x^{x^{\circ}}}$ with an infinite number of x^{\prime} s in the region $0<x<e^{1 / e}$ ．We have also defined a class of functions $F_{n}(x)$ which are a generalization of $f(x)$ ，and which exhibit the property of＂dual convergence，＂i．e．，convergence to different values of $F_{n}(x)$ as $n \rightarrow \infty$ ，depending upon whether n is even or odd．

An elementary exercise is to find a positive x satisfying

$$
\begin{equation*}
x^{x^{x^{\bullet}}}=2 \tag{1}
\end{equation*}
$$

when an infinite number of exponentiations is understood［1］，［2］．The stan－ dard solution is to note that the exponent of the first x must be 2 ，and thus $x=\sqrt{2}$ ．Indeed，the sequence f_{n} defined by

$$
\begin{align*}
f_{0} & =1 \\
f_{n+1} & =2^{f_{n / 2}} \tag{2}
\end{align*}
$$

does converge to 2 as n goes to infinity．Now consider the problem

$$
\begin{equation*}
x^{x^{x^{\cdot}}}=\frac{1}{3 .} \tag{3}
\end{equation*}
$$

By analogy，one might assume that

$$
x=\left(\frac{1}{3}\right)^{3}=\frac{1}{27}
$$

is the solution；however，this is too naive because the sequence f_{n} defined by

$$
\begin{align*}
f_{0} & =1 \\
f_{n+1} & =\left(\frac{1}{27}\right)^{f_{n}} \tag{4}
\end{align*}
$$

does not converge．
The purpose of this article is to discuss some criteria for convergence of sequences of the form
＊This article was authored under contract EY－76－C－02－0016 with the U．S． Department of Energy．Accordingly，the U．S．Government retains a nonexclusive， royalty－free license to publish or reproduce the published form of this arti－ cle，or allow others to do so，for U．S．Government purposes．

