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The sequence of generalized Fibonacci numbers is composed of terms de-
rived from Pascal's triangle. The nth term of the sequence, Uns is equal to 
_-u 4= ' n' *. • n + P ~ 1 r *.i. *- (n - (i - l)p - l\ - . , 
the sum from ^ = 0 to % = —̂= of the terms I . r J, which 

p + 1 \ ^ /' 
represent binomial coefficients. 

In the left-justified form of Pascal's triangle, un equals the sum of 

( Yi + V — 1\ 
^ 1 term and the terms taken successively p units up and 1 unit 

over. For p = 09 this generates the powers of 2. For p = 19 the resulting 
sequence is the Fibonacci numbers. 

The sequence for p = k9 any given constant, begins as follows: 
u0 Ul U2 ••• Uk Uk+1 Uk+2 uk+3 ••• 

1 1 2 . . . k k+l k+2 k+k ... 

The rest of the sequence can be generated using the recursion formula 
Un = Un-1 + ^n-k-1 ' 

There are four important properties related to representations of inte-
gers which apply to the generalized Fibonacci sequence. 

1. Completeness—Every positive integer N can be expressed as a sum of 
distinct un terms: 

N= a1u1 + a2u2 + a3u3 + ••• + a<mum, a^ e {0, 1}. 
2. Zeckendorf Form-—Every positive integer N has a unique representa-

tion using a minimal number of un terms a^a^ + J- = 0 for 1 <_ j <_ k. 
3. Second Canonical Form—In this form, any positive integer M which 

contains u1 = 1 In its representation has this u1 replaced by uQ = 1. This 
form is also unique for each positive integer. 

4. Lexicographic Ordering—Both the Zeckendorf and Second Canonical 
forms of representations are lexicographic orderings meaning that, when com-
paring two numbers M and N9 M > N iff M has the larger coefficient for ui9 
where u^ is the first summand for which the representations of M arid N dif-
fer, going from highest to lowest. 

The set of positive integers can be partitioned into k+l sets, using 
representations in terms of generalized Fibonacci numbers. Since the se-
quence of generalized Fibonacci numbers is complete with respect to the pos-
itive integers, each positive integer N is the sum of distinct un terms. 
The partitions are made according to the subscript on the smallest un term 
used in the Zeckendorf representation of an integer. If the subscript is 
congruent to i modulo (k+ 1), then that integer is an element of the set Ai. 
Every integer is an element of one and only one set A^ for \^i<_k+ 1. The 
notation Ai(ji) denotes the nth element of the set Ai9 when the elements are 
listed in natural order. 

A Art) = R + 
um(k+i)+i9 wbere R denotes the representation of N minus the 

smallest summand. 
can be rewritten using the recursion formula: 

un = un_1 + un_k_19 

lm(k + l) + i = Um(k + I)+i-l + Um(k +1) +i-(k +1) = Um(k+l) + i - l + u(m -l)(k + 1) + i 

= Um(k+l)+i-l + U(m-l)(k+l) + i - l + U(m-2Kk+l) + i 
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Thus, ̂ (n) - U
m(k + D + i "*" ̂  c a n ^ e rewritten 

^i(n) = u^ + Rf
9 1<. i <. k + 1. 

i?' is the rest of the representation of i{(n)s so 

^(n) = ui + ai + 1ui + 1 + ai+2ui+2 + oti + 3Mi + 3 + ••• + amun. 
There are two mappings which are useful in discovering properties of 

the partitioned integers. The first is /, which advances by 1 the subscripts 
on the summands of N when N is written in Second Canonical form. The second 
mapping is f*9 which performs the same function as / on N when N is written 
in Zeckendorf form. 

Ai{n) = ui + ai + 1ui + 1 + ai+2ui+2 +--- + anun. 

AiM - ^ ui + 1 + ai+1ui+2 + ai + 2ui + 3 +••• + anun + 1 = Ai + 1(n) . 

By lexicographic ordering, Ai(n) is mapped by f onto the nth element of Ai + 1 , 
2 <_ i <. k. 

A-^iri) = uQ + a2u2 + &3u3 +'*' + ô Mp, in Second Canonical form. 

A1 (n) — ^ w1 + a2w3 + a3wlf + • • • + awMw+1, 

which is an element of A1. 

4k+1(w) = uk + 1 + a.k + 2uk + 2 +-•• + amum. 

A k + l ^ ^~*Uk+2 + ak + 2Uk + 3 + e " ' + a»M»,+ l-

By the recursion formula, wn = «„_! + un_k_19 uk + 2 = wfc+1 + u1. 

^ + i<>0 ~ ^ Mi + Mk + i + ak + 2wfe + 2 +""• + amww+1, 
which is an element of A±> 

Since A^ 9 A 2 3 »•«$ ^-k + 1 
cover the positive integers, we have that every 

integer n is mapped by f onto the set (^U A3 U Ak U . . . U Ak + 1) . By lexi-
cographic ordering, n is mapped onto the nth element of this set. Call this 
set E1. Then n -£-± H1 (n) . 

An element of the set H1 is mapped forward onto 
(A1 U Ah \J A5 U ... U Ak + 1)9 

since each set except A± and Ak + 1 map forward one set and these two map onto 
A1. Call this second set H2 : n -L± E1(ri) -J~+ E2(n) 

In general, 
E^n) = (A1 U Ai + 2 U Ai + 3 U ... U Ak+1)(n) and H^W-*-+ Hi + 1(n) 

for 1 <. i <_ k - 2. For i = k - 2, 

Ek.2W) - ^ Ek_^{n) = U x U ^ + 1 ) ( n ) . J^-i (w) -̂ -> ̂  (n) . 

n - U ^(w) - ^ #2(n) -*->• E3(n) -*->...-£-> Ek_1(n) - ^ A1(n) . 

Now u s i n g the / * mapping, 

A-L (n) = wx + a 2 u 2 + • • • + amum >- u 2 + a 2 u 3 + • • - + dmum+1 = ^ 2 ( n ) . 
In g e n e r a l , 

Ai{n) = Ui + ai + 1ui + 1 + - - + amum-r-y Ai + 1 (n) 

^ + 1 0 0 = wi + 1 + ai + 1ui + 2 + • - . + amum+1, fo r l < i < L 



292 GENERALIZED FIBONACCI NUMBERS [Dec. 

f* and f are the same mappings except when applied to elements of A 1 S the 
only elements whose Second Canonical and Zeckendorf forms are different. 

(1) n-1^ H1(n)-L^ #2(n)-^- ^ Hk_1(n)-1^ A^n)11* A2in) - ^ . . . ^ Ak + 1(n) . 

The mappings can be used to identify a further relationship between the 
Ei and Ai sets. By (1) above, n is mapped by k successive applications of / 
onto A,(n). Denote this 

n > A (n) . 

n = a1u1 + a2u2 + • • • + amum • u1 + a2uk + 2 + • • • + amuk + m = A1(n). 

A^n) - ^ u2 + a2ufe + 3 + - . . + amuk + m+1 = 4 2 ( n ) . 

n + A^ri) = (u1 .+ w1) + a 2 ( u 2 + wfc + 2 ) + • •• + am(um + uk + m ) . 
Using the recursion formula, 

Mn =w„-i + wn-*-i> ^ i W + n = w2 + a2ufc+3 + ••• + amuk + m+1 = 42(n). 

By similar proofs, any element plus its image k steps forward in the 
scheme described in (1) equals the element one step further in scheme (1). 

(2) A1(n) + n = A2(n), 

Ai{n) + Bi_1{n) =*Ai+1(n) for 2 <_i <_k. 

Here is an example of the representations, partitions, and mappings for 
k = 3. 

The sequence of un
fs for k = 3 begins as follows: 

1 1 2 3 4 5 7 10 ... 

1 = uQ - ^ M l = 1 = ̂ ( 1 ) 

2 = u2 -->• u3 = 3 = #x(2) 

3 = w3 - ^ i^ = 4 = ̂ ( 3 ) 

4 = uh -J~^ u5 = 5 = ̂ ( 4 ) 

5 = uQ + w4 —̂ -> u± '+ u5 = 1 + 5 = 6 = H1 (5) 

6 = u0 + u5 -^-> w1 + w6 = 1 + 7 = 8 = Fx(6) 

7 = u2 + u5 -£-* u3 + u6 = 3 + 7 = 10 = H1(7) 

8 = u0 + w6 -£•»• w1 + w7 = 1 + 10 = 11 = ̂ ( 8 ) 

9 == w2 + w6 - ^ u3 + u7 = 3 + 10 = 13 = ̂ ( 9 ) 

10 = u3 + w6 -£-»• uh + u7 = 4 + 10 = 14 = F1(10) 

The other mappings described in scheme (1) are derived in a similar man-
ner. The array for k - 3 from 1 <. n <_ 10 follows: 

43(n) ^(n) 

3 4 
10 14 
13 18 
17 23 
22 30 
29 40 
36 50 

n 

1 
2 
3 
4 
5 
6 
7 

^(n) 

1 
3 
4 
5 
6 
8 
10 

H2 (n) 

1 
4 
5 
6 
8 
11 
1.4 

M W ) 
i 
5 
6 
8 
11 
15 
19 

A20 
2 
1 
9 
12 
16 
21 
26 
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n H1(n) H2(n) A1(n) A2(n) A3(n) Ah(n) 

8 11 15 20 28 39 54 
9 13 18 24 33 46 64 
10 14 19 25 35 49 68 

Examining this array, it is soon apparent that the differences between 
successive elements in a given set depend on which set the subscript belongs 
to. Thus9 it is necessary to add another layer of subscripts to discuss these 
differences. We want to find a general description for 

AjUiW + 1) ~ AjUiOt)). 
Denote this difference, M ^ f i ^ n ) ) , as hg(j 9 i) . 

The simplest case to start with is hg(l9 2)., The first step is to notice 
that by applying lexicographic ordering to mapping scheme (1), we can see that 
that number of integers N £ H1(n) must equal the number of elements of A± that 
are <_A2 (n) . The same idea applies to any two pairs of numbers an equal num-
ber of sets apart in the mapping scheme. 

Since the number of integers N <_ H1(n) = E± (n), we have that #A± elements 
<_A2(n) = # (n) . Thus, the largest A element <_ A 2(n) is A1 (H1 (n)) . 

A2(n) = u2 + a3w3 + •• •-. + umum. 
Since u2 = 2, 

A2(n) - 1 = 1 + a3u3 + ••• + amum = u1 + a3u3 + ••• + amum e A±. 

Since we are dealing with integers, the closest two elements can be is 1 apart. 
Thus A2(n) - 1 is the largest element less than A29 and since we know it is an 
element of A19 it must be i41(^1(n)). 

A1(H1(n)) + 1 = A2(n). 

The set E1 excludes A2 elements, so A± (A2 (ft) ) cannot equal any A1(H1) ele-
ment. A1(A2(n)) + 1 i A2. 

A An) = u1 + a2u2 + ••• + anun« 
Since u1 = 1, 

A1(n) + 1 = 2 + a2u2 + ••• + anun. 

We know that A1(A2(n)) + 1 does not belong to A2» Adding 1 to A 1(A2(n)) must 
change the representation so that u2 is not used,, Since in the Zeckendorf form 
and the Second Canonical form we are dealing with you cannot have terms in the 
representation closer than k subscripts apart, Al{A2{n)) + 1 cannot be an ele-
ment of A39 Ah, ...9Ak+1. By process of elimination, A1(A2(n)) + 1 is an ele-
ment of Ai> By lexicographic ordering, it must be the next element after the 
A2(n)th element. 
(3) Agr(l, 2) = 1. 

Next we want to find A^(l, i) for 3 <_ i <_ k. We know from mapping scheme 
(1) that n —£->• H1(n), Therefore, Ai(n) -£->• H1(Ai(n))a But we also know from 
the mapping scheme that Ai(n) -l^Ai + 1(n) for 2 <_ i £ k9 since f and f* are the 
same mappings for these elements. Thus, 

(4) H1(Ai(n)) = Ai+1(n), 2 <i ±k. 

By lexicographic ordering and mapping scheme (1)5 i\A^ elements £ A^^{n) = 
#n!s <_ H1(n) = H1(n) . 

^i + i(n) = ui + i + ai + 2Ui + 2 + • • r • + o.mun. 
ui + i = i + I for 0<_ z <_ k9 so Ai + 1(n) - 1 = i + ai + 1 + •• • + amum e ̂  . 

^ 
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We know that there are #x (n) elements of A^ £i4^ + 1(n). Therefore, the 
largest ̂  <_ A^ + 1 (n) ±s Ai{E1(ji)) . We know that A^ + 1 (n) - 1 e At , and that 
this is the closest any 2 integers can get. Therefore, 

(5) Ai(H1(n)) + 1 = ^ + 1(n), for I <i <k. 
Equation (5) can be generalized further. By lexicographic ordering and 

mapping scheme (1) , Mi elements £ Ai+ j(n) = #n's £ Hj (n) =FJ- (n) , for l±i<_k\ 
l<j<k-l; 1 < £ + J < / C + 1 . Thus the Fj-(n)th element of Ai is the largest one 

wi + J- = £ + J for l £ i + J£^ + 1, so 

Ai + d{n) - J = ̂  + ai+j + iui+j+i + • • • + a A . 

£ = ui for 1£ £ £ & + ! , so 

At+j(n) - j e A^. 

By mapping scheme (1), the closest any 2 elements of A^ andA^ + j can be is j 
units apart, so Ai + J-(n) - j is the largest A^ element <_ A^ + J-(n) . Thus, 

(6) 4 i f e ( n ) ) + j =Ai + j(n) fo r l £ i £ f c ; l £ j £ f c - l ; 1<_^ + j <_fe+ 1. 

^ O M ^ i - i <">))'+ ! - ^ U j n ) ) + 1, by (4) , 
^ ( f f iUM(n))) +• 1 -A2(Ai_1(n)) b y ( 5 ) . 

T h U S (a) ^ ( ^ W ) + 1 = ^ 2 U i _ 1 ( n ) ) . 
^ 2 ( ^ 3 ^ ) ) + i - 3 = ^ _ x ( n ) by ( 6 ) . 

# ; _ 3 = ( ^ U ^ . i U Ai_1\J Ai U ••• LUfe + 1 ) by d e f i n i t i o n of ̂  ( see p . 291 ) . 
Thus Ai_1(n) e Hi_3, and A2{Ai_1(n)) + i - 3 e Air.-L9 say Ai^{t) . 

i 4 2 ( F i . 2 ( w ) ) + i - 2 = i^ (w) by ( 6 ) . 

Hi-2 = (^i U ̂ ^ U • • • U ;4fc + i ) by d e f i n i t i o n of Hi. Thus Ai.1(n) i Hi-2> a n d 

i 4 2 U * - i ( w ) ) + i - 2 i A€. 
A2(Ai,1(n)) + i - 2 = Ai_1(t) + 1 i A.. 

Ai,1(t) = ut_Y + a ^ + . . . + amum. 
Adding 1 to this particular A$_x element must change the representation so 
that a Ui is not used. Since, in Zeckendorf and Second Canonical form, no two 
summands can have subscripts closer than k units apart, Ai_1(t) + 1 cannot use 
any summands from u2 9 us 9 ... up to uk+1. This means that ̂ 4^_1(t) + 1 $ A2, 
A3, ... up to Ak + 1 . The-only remaining set is A±. 

From (a) above, A1(AiM) + 1 = A2(Ai_1(n)) . A2(Ai_1(n)) +i - 2 e A1, 
and this must be the next Ax element after A1(Ai(n)) by lexicographic order-
ing. Therefore 

(7) &g(l9 -i) = I - 1 for 3 £ £ £ fc. 

The next case we will examine is hg(\9 1). Since n • •• Fx (n) , from map-
ping scheme (1) , 

•^(w) -J~h H1(A1M). 
From (1), we also know that 

A1(n) - ^ A2fyi). 

The only difference betweem the two mappings is that f maps u0 = 1 onto w = 1, 
while jf* maps u ' = 1 onto w = 2. Therefore, we know that 

^1U1(n)) + 1 = A2(n). 
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But we also know that A1{H1(n)) '+ 1 = A2(n) by (5). Thus 

(8) A1{H1(n)) = H1(A1(n)). 

By (4), ̂ (^(n)) = Ai + 1(n) for 2 <. i <_ k. H1(Ak+1(n)) is the only por-
tion of the H1 set not identified as a particular A i . #,_' = (^ U'i43 U A+ U . .. 
U i4k + 1 ) . ^3 , A4 , . . . , A k + 1 are taken by ̂  (Ai(n)) for 2 ^ £•< fc, and A± (#x (n)) 
is taken by H1(A1(n)). Since the elements of each set i { do not overlap, 
H1{Ak + 1(n)) must be an element of the only remaining portion of H : A (A2) . 
By lexicographic ordering, it must be the nth. 

(9) ^(4+1W) = A1(A2(n)) . 

MMM"))) + 1 =^2(4W) by (5) 
= ̂ (^(^(n))) + 1 by (8). 

Ai (#i (4 + i (n)) ) + 1 = 4 2 Ufc + 1 (n)) by (5) 
= A1(A1(A2(n))) + 1 by (9). 

(A1 U Ak + 1) = Hk-i* so the first line of each of the above two equations 
defines A2(Hk_1(n)). 

(H1 U A2) = all the integers; thus, the second line of each of the above 
two equations defines Ai(Ai(n)) + 1. 

Thus A2(Hk_1(n)) = A1(A1(n)) + 1 . 

A2(Hk 1(n)) +k- 1 = Ak + 1(n) by (6). 
So 

A1{A1(n)) + k = Ak + 1(n). 

Ak + 1M = uk + 1 + afc + 2Wfc + 2 + ••• + amwm. 

4 + i 00 + 1 = ^ + uk+1 + ak + zuk + z + •-- + cnmum9 

since 1 and k + 1 are k units apart, making the combination of u and uk + 1 
acceptable under Zeckendorf form. 

Ak+1(n) 4- 1 £ A l 9 since it has a uY in its representation. Thus 

A1(A1(n)) + k + 1 e 41 9 

and this must be the next A^ by lexicographic ordering. 

(10) A#(l, 1) = fc + 1. 

Finally, we examine A#(l, k + 1). ^i(^_i(n)) + (k - 1) = ̂ ( n ) by (6). 
Ak + 1(n) e Hk_19 so A1(Ak + 1(n)) + k - l e Ak. 

A1{A1(n)) + fc = A2(f//,_1(n)) + fc - 1 = Ak + 1(n) from the preceding argument 
for A^(l, 1 ) . 

A1(Ak + 1(n)) + k-t Ak + l9 since ̂  and A k + 1 are disjoint sets. 
A1(Ak + 1(n)) + k = ̂ fe(t) + 1. Since this ,4fe(t) + 1 is not an element of 

Ak+19 ±t can only be an A 1 element from the restrictions imposed by Zeckendorf 
f orm, 

A1(Ak+1(n)) + k e A l 9 and it must be the next A 1 by lexicographic order-
ing. 
(11) A#(i, k + 1) = k. 

Combining equations (3), (7), (10), and (11), we have that 

A#(l, 1) = k + 1, 
A^(l, i) = i - 1, for 2 <_ i <_ fe + 1. 

Since ul = 1 for l £ ^ ^ & + 1? we can restate this as 

A#(l, 1) = uk+19 

A#(l, i) = wi_1.' 
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Now we will use mathematical induction to prove what hg(js i) is equal 
t o . 

(12) *fc+j> I n d u c t i o n H y p o t h e s i s : A ^ ( j 5 1) 
A # ( j , i) = w7:+J_2s fo r 2 <_ i <_ k + 1, 

These differences apply for 1 •<_ j <_ k + 1. 
Equations (3), (7), (10) ,and (11) prove that the induction hypothesis is 

true for j = 1, establishing an induction basis. 
Assume 

(13) Ag(m, i) , for 2 £ i £ k + 1. 
(a) Am^{Ai{n)) = AjH^A^n))) + 1 by (5). 

AjE-^AiM)) + 1 = Am(Ai + 1(n)) + 1 by (4). 

Am(Ai+1(n)) + ui+„ 

(b) 

Am(Ai + 1(n) + 1) by assumption (13), for 1 <_ i <_ k. 

Ai + 1(n) + 1 e Hx for 1 <_i <_k. 

Since Am{H1(n)) + 1 = i4„ + 1(n) by (5), i4„,Ui + 1(n) + 1) + 1 e 4m + I 

Am(H1(Ai(n))) + 1 -i4m+1(4i(n)) from (13a) 
= Am{Ai+1(n)) + 1. 

Thus 

Thus 

and by (5) , 

4i, + i(M"» = ̂ »Ut +!<")).+ 1-
4n+i<M">) +ui+ m-1 Am{Ai + 1(n)) + M ^ . - L + 1 

4 m U i + 1(w) + 1) + 1 by (13). 

^ m U , + 1(n) + 1 ) + 1 e ^ + 1 by 13b), 

H + m-1 ' 

This must be the next A 9 so 
m+i 

A#0w + 1, i ) = ui + (777 + 1) - 2 

Thus f a r , assuming Ag(m9 i) = ui+m_2 has impl ied t h a t 
Ag(m + 19 i ) = ^ + ( W + I ) - 2 J for 2 <_ i <_ k. 

By mathematical induction, hypothesis (12) holds true for 2 <_ i <_ k. 
Assume 

(14) hg(m9 k + 1) *k+m-l and A#(tfz, 1) = ufe+OT. 

4n + iUfc+i ( w >) a ^ ( f f i ( 4 + i W ) ) + x b y (5> 
= ^ U x U 2 ( n ) ) ) + 1 by ( 9 ) . 

AjA^A^n))) + u , + w = i m ( ^ U 2 W ) + 1) by (14) 
= Am(A1(A2(n) + 1)) by ( 3 ) . 

AjA^n)) + 1 e H19 so ^ ( ^ (4 2 (n ) + l ) ) + 1 e J4W + 1 by ( 5 ) . 
P u t t i n g t h e l a s t few s t a t e m e n t s t o g e t h e r , 

4n + iUfc + i ( n ) ) + Wfc + OT e Am + 1. 
This must be the next Am+1 element by lexicographic ordering. 

Kg{m9 k + 1) = uk + m „ 1 implies hg{m + 1 , ^ + 1 ) = uk + m = ukHm^).^. 
Since Ag(j9 k + 1) = uk+j_1 was proved true for j = 1 in (11), and assum-

ing this statement true for j = m implies that it holds for j = m + 1, then, 
by mathematical induction Ag(j9 k + 1) 
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For the final case, we want to prove that Lg{m9 1) - <^k + m 

kgijn + 1 , 1 ) = wk+m+1-

An + i^iC")) = ^ i U i W ) ) + Iby (5) = Am(A1(H1(n))) + 1 by (8), : 
Am(A1(H1(n))) + uk + m = Am(A1(H1(n)) + l) by (14) = An(A2W) by (5), 

i4mU2(n)) + um = 4mU2(n) + 1) by (13). 

Since ̂ (^(n)) + 1 = 4m+1(n) by (5), and A2(n) + 1 e HlS then 

Am(A2(n) 4- 1) + 1 £ Am+1. 
Combining the above statements, 

Am + i ^ W ) + ^ + m + um e Am+1. 
This must be the next Am+1 element by lexicographic ordering. 

hg{m + 1, 1) = uk + m + um. 

By t h e r e c u r s i o n formula , un = un^ + un_k_is uk + m + um = M ^ . ^ , so 

A^OTZ + 1, 1) = uk + m + 1 . 

By mathematical induction, hypothesis (12) has been proved true. 

A#(j\ i) = ui + J-_29 2 <_ i <. fc + 1, 
Ag(j, 1) = uk+j 9 

for 1 £ j <_ fc + 1. 
Arrays for k = 1, 2, and 4 follow to help illustrate the difference for-

mula A^(i, j). The array for /c = 3 can be found on pages 291-292 above. 

k = 1: The sequence of un
?s generated for /c = 1 in Fibonacci numbers is; 

UQ 

1 

Wo 

1 

u l 

1 

Ml 

1 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

u2 

2 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

w2 
2 

H^n) 

1 
3 
4 
5 
7 
9 
10 
12 
13 
14 

u3 

3 

^3 

3 

i 

w^ 

5 

^(n 

1 
3 
4 
6 
8 
9 
11 
12 
14 
16 

uh 

4 

A1(n 

1 
4 
5 
7 
10 
13 
14 
17 
18 
20 

u5 

8 

) 

u5 

6 

) 

u6 w7 

13 21 

A2(n) 

2 
5 
7 
10 
13 
15 
18 
20 
23 
26 

us u7 . 

9 13 . 

A2(n) 

2 
6 
8 
11 
15 
19 
21 
25 
27 
30 

uQ 

34 

A3(n) 

3 
9 
12 
16 
22 
28 
31 
37 
40 
44 
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k = 4: 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

u0 
1 

#i(n) 

1 
3 
4 
5 
6 
7 
9 
11 
12 
14 

ux 

1 
#2(n) 

1 
4 
5 
6 
7 
9 
12 
15 
16 
19 

iin L/t q 

2 3 
H3(n) 

1 
5 
6 
7 
9 
12 
16 
20 
21 
25 

uh u5 

4 5 
A^n) 

1 
6 
7 
9 
12 
16 
21 
26 
27 
32 

w6 
6 

42'(n) 

2 
8 
10 
13 
17 
22 
28 
34 
36 
42 

IA. -j LA, Q 

8 11 
A3(n) 

3 
11 
14 
18 
23 
29 
37 
45 
48 
56 

u9 ... 
15 ... 

Ah{n) 

4 
15 
19 
24 
30 
38 
49 
60 
64 
75 

A5(n 

5 
20 
25 
31 
39 
50 
65 
80 
85 
100 

Another question suggested by these arrays is: How many elements of a set 
Aj are less than a given n? To find the answer, we need a function that in-
crements only when it passes an Aj element. This function turns out to be the 
third difference of terms in successive Aj sets. 
(15) #A/s < n = S(j\ n) = Ak+5_d(n) - 3 ^ + w ( n ) + 3Ak+3_d(n) - Ak + 2^.(n)\ 

Vhoofc First j we need to define the sets Ak + 29 ̂  + 3, and Ak+h and show that 
their properties are consistent with those of 4 p i2, ...» ̂ fc+i-

f̂e-f-i(n) " ^ ^ i K + i ^ ) ' ^y maPPing scheme (1). 

^ U H 1 W ) =i41U2(n)) by equation (9). 

4fc + i(w) -£1>i41U2Cw)) -^-*42U2(n)) - ^ ^ ( ^ ( n ) ) , usin§ (1) 

with the subscript A2(n) instead of n. 
'i41(n) is mapped onto f̂e + 1(n) by k applications of /*. 

A1(n) = u± + a2u2 + •• • + amum > uk^1 + a2uk + 2 + • • • + amuk+m = Ak + 1(n). 

Ak + i^ " ^ uk+i + <VW + ' " + a A + ,+ i = Mi + u
k + i + a 2 ^ + 3

 + * 8 ' 

i41(n) = u1 +.a2w2 + ••• + afflum 

4fc+1(n) = ufe + 1 + a2wfc + 2 + ••• + amuk + m 

A^n) + Ak + 1(n) = wx + wfc + 1 + a2 (w2 + uk + 2) + -•• + am(um + ufc+w) 

= ui + w*-+1 + a2wfc + 3 + " " + a Mfc + w +i» 
by the recursion formula. 

^(w) + i4fc + i(w) = 4!(42(n)) . Relabel A1(A2(n)) as Ak+2(n). 
Since A2(n) and Ak+2(n) are also k applications of f* apart in the map-

ping scheme9 A2(n) + Ak+2(n) = A2(A2(n)) by the recursion formula, since 

Ak + 2(n) - ^ A2{A2(n)) . 
Re labe l A2(A2(n)) =Ak+3(n). 

S i m i l a r l y , A3(n) + Ak+3(n) = A3(A2(n)) = Ak + li(n). 

A#(fc + 2 , i ) = Ag(ls i) + A^(fc + 1, i) = u ^ + uk+i^ = Hfc + *, 
f o r 2 < i < / c + 1. 

A#(fc + 2 , 1) = A#( l , 1) + Ag{k + 1 , 1 ) = uk + 1 + u2k + 1 = u2fe + 29 

This r e s u l t i s c o n s i s t e n t w i th formula (12) above. 

Ag(k + 3 , i) = A#(2, £) + Ag(k + 2 , i ) = u + uk^i = w^ + i + 1 fo r 2 <i ±k+l. 
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Ag(k + 3 , 1) = A#(29 1) + Ag(k + 2 , 1) = uk + 2 + u2k+2 = u2k + 3. 
Ag(k + 49 i) = A#(39 i ) + A#(k + 3 9 i) = ui + 1+uk + i+1 =uk + i + 2 f o r 2<_i^k + 1. 
A#(k + 49 1) = A#(39 1) + Ag(k + 3 , 1) = uk + 3 + u2k+3 = u 2 f e + l f . 
Thus, equa t i on (12) can be extended t o cover 1 <_ j £ k + 4s 

A ^ ( j , i) = ui + j _ 2 9 2 <_ i <_k + 19 

Ag(j9 1) = uk+j. 

Now f u n c t i o n (15) i s de f ined for a l l v a l u e s of j and i . 

SU> n) = / M / s < n = Ak + 5_d(n) - Mk + ^d(n) + Mk+3-d(n) - Ak + 2-j(n) by ( 1 5 ) . 

To prove t h a t S(j9 ri) i nc rements only when p a s s i n g an Ad e l emen t , look a t 

S(j9 n + 1) - S(j9 ri) = A 5 ( j , n) . 

AS( j , n) = uk + 3_d+i- 3uk + 2 „ d + i + 3uk + 1_j+i~ uk_d+i fo r 2 <_ i £ fc + 1. 

AS(j9 ri) = (uk + 3_j + i - wfe + 2 - J . + ^) - 2(uk + 2_j + i - f̂e + i - j + ^) 

+ (w?c + 1_J- + i - uk_j + i)0 

Using the recursion formula, AS(j9 ri) reduces to 

u2_j+i- 2Ul_j + i-^ u.d+i = (u2 + i_3. - u1 + i_d) - (M1 + i_d - Ui.j). 
Looking at the series of un

fs, we find that the only time this function 
= 1 is when i = j, so AS(j9 ri) = (u2 - u±) - (u1 - u0) = 1 - 0 = 1. 

This happens because u^ = % for 1 £ - £ £ & + 1, and because, by the recur-
sion formula, U-i = 1 for -k < -i £ 0. Any other successive difference of 3 
consecutive u^ terms equals 1 - 1 = 0 for i > j or 0 - 0 = 0 for i < j. 

Thus, S(j» ri) increments 1 iff n e Aj for 2 <_ i <_k + 1. Since i = 1 
has a distinct difference, that case has to be proved separately. 

A5(j, n) = u2k + 5_d - 3u2k + h_j + 3w2/, + 3_J- - u2k + 2_d 

= (U2k + 5-j " U2k+h-j^ " 2(u2fc + Lf_J- + U2k + 3-3' 

+ (U2k + 3-j ~ U2k + 2-j) 

= uk + h_c- - 2uk + 3_j + uk + 2_j 

= (uk + h_3. - uk + 3_j) - (uk + 3._3. - uk + 2_j) 

= U3_j - M2_j. 

= 0 except for J = 1, when it equals 1. 

Thus, £(j9 n) increments 1 for i = 1 only when j also = 1. 
The function £(j, n) has been proved to be accurate to within a constant 

by examining A5(j, ri). If a constant were present at the end of the function, 
it would cancel out in the incrementation process. To find out the value of 
the constant, it is necessary to check S(j9 1) for 1 £ j £ ?c + 1. 

^(1) = 1, A2(l) = 2, ..., Ak + 1(l) = k• + 1, 

^(4,(1)) = Ak + 2(l) = i41(2) = k + 2, 

^ 2 U 2 ( D ) = Afc + 3(1) = i2(2) = • fe + 4, 

i43(i42(l)) = 4 + tfd) = ̂ 3(2) = k + 7. 

These values were derived from the difference formula (12) above. 

5(1, 1) = Ak+h(l) - 3Ak+3(l) + 3Ak+2(l) ~ Ak+1(l) 

= (k + 7) - 3(k + 4) + 3(fc + 2) - (fc + 1) = 0, 
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5 ( 2 , 1 ) = Ak + 3(l) . - 3Ak + 2 ( l ) + 3Ak + 1(l) - Ak{\) 

= (fc + 4) - 3(fc + 2) + 3(k + I ) - Zc = 1, 

5 ( 3 , 1) = 4 + 2 ( D - 34fc + 1 ( l ) + 3 4 f c ( l ) - ^ ^ ( l ) 
= (k 4- 2) - 3(fc + 1) + 3(fc) - (fc - 1) = 0 , 

Sti, 1) - V s - , - 3 ( 1 H + W
( 1 ) + 3 ^ + 3 . / l ) - ^ + 2- / ! ) 

= (fc + 5 - j ) - (k + 4 - j ) + (fe + 3 - j ) - (& + 2. - j ) 

= 0 fo r 4 £ j £ Zc + 1. 

F i n a l l y , 5 ( 1 , n) ~ Ak+h(n) -3Ak + 3(n) + 3Ak+2(n) - Ak + 1(n) , 

5 ( 2 , n) = Ak + 3(n) - 3Ak + 2(n) + 34fc + 1(w) - Ak(n) - 1, 

SO", w) = Ak + 5.j(n) - 3 4 + w (n ) + 3^ + 3 „ j . (n) - Ak + Zr.J9 

for 3 £ j £ fe + 1. 

REFERENCE 
1. Verner E. Hogga t t , J r . "A New Angle on P a s c a l f s T r i a n g l e . " The Fibonacci 

Quarterly 6 (1968)^221-234. 

A NOTE ON TAKE-AWAY GAMES* 

ROBERT J . EPP AND THOMAS S. FERGUSON 
Department of Mathematics, UCLA, Los Angeles, CA 90024 

1 . SUMMARY 

Schwenk [1] considers take-away games where the players alternately re-
move a positive number of counters from a single pile, the player removing the 
last counter being the winner. On his initial move, the player moving first 
can remove at most a given number m of counters. On each subsequent move, a 
player can remove at most f(ri) counters, where n is the number of counters re-
moved by his opponent on the preceding move. In [1], Schwenk solves the case 
when f(n) is nondecreasing and f(n)>_n. This solution is extended to the case 
when f(n) is nondecreasing and /(!)_> 1» 

2. THE WINNING REPRESENTATION 

Let f(n) >1 be a nondecreasing function defining a take-away game. If a 
player whose turn it is to move is confronted with a pile of n _> 1 counters, 
let L(n) be the minimal number of counters he must remove in order to assure 
a win. Let L(0) = °°e Note that L(n) <_ n for n >_ 1 and that equality might 
hold. Note also that removing k counters from a pile of n is a winning strat-
egy if and only if f(k) < L(n - k). 

ThtQKom 2.1: Suppose f(k) < L(n - k); then k = L(n) if and only if L(k) = k. 

VKOO^1 Suppose that L(k) < k. By removing L(k) counters from a pile of 
counters, a player can then guarantee he will eventually remove the last of 
the first k counters, and that he will do this by removing £ < k counters. 
His opponent will than face a pile of. n - k counters and be able to remove at 

^Research partially supported by NSF Grant MCS 72-04591. 


