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1. INTRODUCTION 

In this paper we will extend the results of D. D. Wall [12], John Vinson 
[11]9 D. W. Robinson [9], and John H. Halton [3] concerning the divisibility 
properties of the Fibonacci sequence to the general Lucas sequence 

(r» _ r » ) /( r i _ p 2 ) . 

In particular, we will improve their theorems for the Fibonacci sequence. 
Their results are inconclusive for those primes for which 

(5/p) = (™l/p) = 1, 

where (x/p) is the Legendre symbol for the quadratic character of x with re-
spect to the prime p. We will obtain sharper results in these cases. 

Let 

(T) un + 2 = aun + 1 + bun9 

where uQS ul9 a, and b are integers, be an integral second-order linear recur-
rence. The integers a and b will be called the parameters of the recurrence. 
If u0 = 0 and u1 = 1, such a recurrence will be called a primary recurrence 
(PR) and will be denoted by u(a9 b). Associated with PR u(a9 b) is its char-
acteristic polynomial 

x2 - ax - b = 0 

with roots r1 and v2 where r± 4- v2 = a and rxr2 = -b. Let 

D = a2 + kb = (r1 - r 2 ) 2 

be the discriminant of the characteristic polynomial. If D £ 0S then, by the 
Binet formula 

(2) un = (r? - vn
1)I(r1 - r2) . 

One other type of sequence will be of interest; the Lucas sequence v(a9 b) in 
which 

(3) vn+2 = avn+1 + bvn9 v0 = 2, Vl = a. 

As is well known, the Lucas sequence is given by the Binet formula 

(4) vn = vl + r». 
To c o n t i n u e , we need t h e fo l lowing d e f i n i t i o n s which a r e modeled a f t e r 

t h e n o t a t i o n of Hal ton [3] . The l e t t e r p w i l l always denote a r a t i o n a l p r ime . 

Vd^nAJtton I : v ( a , b9 p) i s t h e numeric of t h e PR u(a9 b) modulo p . I t i s 
the number of n o n r e p e a t i n g terms modulo p . 

Vt^AJbitiovi 2°> ] i (a , b9 p) i s t he pe r i od of t h e PR u(a9 b) modulo p . I t i s t h e 
l e a s t p o s i t i v e i n t e g e r k such t h a t 

un+k = Un (mod p) 
is true for all n >_ v(a, b9 p) . 

Clearly, if v(a9 bs p) = 0, 
uM(aibfP)E ° a n d wn(a,&,P)+iE 1 ( m o d p ) . 

316 
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VdjlvuXlon 3: a (a, b9 p) is the restricted period of the PR u(a9 b) modulo p. 
It is the least positive integer k such that 

un+k =' sun (mod P) 
for all n >_ v(a9 b9 p) and some nonzero residue s. Then s = s(a9 bs p) is 
called the multiplier of the PR u(a, 2?) . If uk = 0 (mod p) f or k >. v(a9 b9 p) 9 
we say that s(a, b9 p) - 0 by convention. 

VzjLvujtion 4: 3(a9 b9 p) is called the exponent of the multiplier s(a5 b9 p) 
modulo p. It is clearly equal to 

]i(a9 b9 p)/a(a9 bs p) . 

V^jhujtiovi 5: In the PR u(a9 b) the rank of apparition of p is the least posi-
tive integer, if it exists, such that uk E 0 (mod p) . 

We will restrict our attention chiefly to the PR's u(a9 b) s because, as 
we shall see, if b £ 05 then for these sequences the rank of apparition of p 
exists. By [10], primary recurrences are essentially the only recurrences hav-
ing this property. 

2. PRELIMINARY RESULTS 

The following well-known properties of Lucas sequences will be necessary 
for our future proofs. Proofs of these results can be found in the papers of 
Lucas [8] or Carmichael [2]. 

(5) In the PR u(a9 b) suppose that b f 0 (mod p) and that p ^ 2, 
Then 

Up-(D/p) = ° (m o d P) • 
( 6 ) um + n = bumun-l + unum+l' 

(7) ul - un_lUn + 1 = (~b)n~\ n>l. 

(8) v2
n - Du2

n = M-b)n . 

(9) M2n = M B . 

(10) If pf&P, then p is a divisor of the Lucas sequence v(a9 b) If 
and only if a(a9 bs p) = 0 (mod 2) for the PR u(a9 b) . Then 
the rank of apparition of p in t>(a9 b) is (l/2)a(as b9 p) . 

The following two lemmas will determine the possible numerics v(a9 b9 p) 
for the PR u(a9 b) modulo p. 

U M M _ J _ : in the PR u(a, b) if b 2 0 (mod p) , then v(a, b9 p) = 0 and a(a5 Z?9 p) 
is also the rank of apparition of p. Also, if uk = 0 (mod p ) , then 

a(a9 2?9 p) |fc. 
Further 

a(a9 &9 p) |p - (Dip). 
P/L00^: Since there are only p 2 possible pairs of consecutive terms (unS un+1) 
(mod p ) 9 some pair must repeat. Suppose that the pair (uk* uk+1) is the first 
such pair to repeat modulo p and that k + 0. Let 77? = y(a3 b, p) . Then,, 

M k + m
 E M k a n d w k + l + m E Mfc + 1 ( m o d P > -

However9 by the recurrence relation (1), 

buk_1 = f̂e + i - cn-^. 
Since b i 0 (mod p ) , 

Mfe-i = (Mfe + i ~ #ufe)/& (mod P) • 
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Hence9 the pair (uk_19 uk) repeats modulo p which is a contradiction if k^Q. 
Thus, the pair (w0, ux) = (0, 1) repeats modulo p. Hence, the numeric is 0 
modulo p and the PR u(a9 b) is purely periodic modulo p. 

Now, let n - a(a9 b9 p). As in the above argument, (u , u ) is the first 
pair (uk, uk+1) such that 

Uk+n E SUk a n d Uk+l+n E SUk + l ( m o d P> 

for some residue s (mod p). The assertion that a (a, £>, p)|k now follows from 
the fact that the PR u(a9 b) is purely periodic modulo p, The rest of the 
lemma follows from (5). 

Lemma li In the PR u(a, b), assume that b = 0 (mod p). 
(i) If a $ 0 (mod p), then v(a, b 9 p) = 1 and un E a""1 (mod p), n > 1. 
(ii) If a = 0 (mod p) s then v(a, Z?, p) = 2 and un E 0 (mod p) , n _> 2. 

?/L00̂ » This follows by simple verification. 

3. RESULTS FOR SPECIAL CASES 

For certain special classes of PRTs, we can easily determine ]x{a9 b9 p), 
a(a, Z?, p) , and s(a, Z>, p) . Of course, if y(a, Z?, p) and a(a, 2?, p) are known 
exactly, B(a, Z>, p) is immediately determined. Theorems 1-4 will discuss these 
cases. The proofs follow by induction and direct verification. 

Tk&OK&n 7»' In the PR u(a, b) , suppose that b = 0. 
(i) If a ̂  0 (mod p) , then un = an-1

9 n _> 1. 
Further, 

v(a, Z?, p) = 1, a (a, Z?, p) = 1, y(a, Z?, p) = ordp(a), and a (a, Z?, p) . = a 

for all primes p, where ordp(rc) denotes the exponent of x modulo p. 
(ii) If a = 0 (mod p), then un - 0, n > 2 , 

v(a, 2?, p) = 2, a (a, b9 p) = 1, y(a, Z?9 p) = 1, and s(a9 2?, p) = 0. 

ThzoKQJM 2: In the PR w(a, Z?) let a = 0 and b i 0 (mod p) . Then 

u2n = 0 and "uZn+1 = b , n >_ 0. 
Further, 

v(a, fc, p) = 0, a(a, b9 p) = 2, ]i(a, b9 p) = 2 ordP(Z?), and s(a, Z?, p) = b. 

ThdOKom 3' In the PR u(as b) suppose that Z?=0, a ? 0 (mod p) , and b f 0 (mod 
p). Then 

wn - n(a/2)n_1, n >. 0. 
Further 

a(a, Z?, p) = p, y(a, b9 p) ^ p ordp(a/2), and s(a, Z?, p) = a/2. 

Thzotiem 4: In the PR u(a, b) suppose that r1/r2 is a root of unity. Let k be 
the order of the root of unity. Let £,k be a primitive /cth root of unity. 

(i) If k = 1, then a == 271/, b=-N9 D = 0, P 1 = 71/, r2 = 217, and. r1/r2 = 1. 
Theorem 3 characterizes the terms of this sequence. 

(ii) If k = 2, then a = 0, b = 71/, £> = 471/, rx = //!/, r2 = Wff9 and r17r2 = 
-1. Theorem 2 characterizes the terms of this sequence. 

(iii) If k = 3, a = 71/, b =-N2
9 D = -371/2, P 1 = ~ C 3 ^ r2 = -£*JV, and 2̂ /2?,, -

(iv) If Zc = 4, a = 271/, Z? = -271/2, 7} = -471/2, r1 = (1 + t)717, 2y= (1 - £)#, 
and r1/r2 = -i where £ - i/̂ T. 

(v) I f /c = 6, a = 371/, b = -371/2, 0 = -37172, v1 = - ^ 3 / 3 , r2 = i^ | ( /3)A^, 
and r1/r2 = ^ 6 . 
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Moreover, if k _> 29 then 

a(a, b5 p) = k9 \x(a9 b, p) = k ordp(s), 
and 

s(a9 bs p) = s = sgn(a*) (-(-*) k/2) (mod p) , 

where sgn(#) denotes the sign of x. Furthermore, if n = qk + P 9 0• >_ p _>_ fc9 and 
fe _> 3 9 then 

un = squr = (-D̂ iV̂ w,.. 

In Theorem 49 note that fc = 19 29 39 4, or 6 are the only possibilities 
for k since these are the only orders of roots of unity that satisfy a quadra-
tic polynomial over the rationals. 

Just as we treated the divisibility properties of certain special recur-
rences with respect to a general prime9 we now consider the special case of the 
prime 2 in the following theorem. We have already handled the cases where b E 
0 or a E 0 (mod 2) in Theorems 1 and 2. 

ThzoKWi 5: Consider the PR u(a5 b). Suppose that l\ab. Then v(a, b9 2) = 09 

]i(a9 b9 2) = 39 a (a, 2?9 2) = 39 and s(a9 bs 2) = 1. The reduced recurrence 
modulo 2 is then 

(0, 1, 1, 09 1, 1, ...) (mod 2). 

k. GENERAL RESULTS 

From this point on9 p will always denote an odd prime unless otherwise .spe-
cified. Theorem 6 gives criteria for determining \i(a9 b9 p) , a(a9 b9 p) , and 
s(a9 b9 p) for the general PR w(a, b) . For the rest of the paper, Pf will de-
note the square-free part of the discriminant Ds and K will denote the algebraic 
number field Q(/DT) 9 where Q as usual stands for the rationals. 

ThdOtim 6: In the PR u(a9 b) s suppose that p\bD. Let P be a prime ideal in 
Z dividing p. If (P/p) = 19 we will identify P with p. 

(i) y(a9 2?9 p) is the least common multiple of the exponents of r1 and 
P2 modulo P. 

(ii) a(a9 b9 p) is the exponent of r1/r2 modulo P. If (D/p) = -1, then 
a(a9 2?9 p) is also the least positive integer n such that 2»1 is congruent to a 
rational integer modulo P. 

(iii) If k = a(a9 &9 p ) , then s(a9 b9 p) = r£ (mod P)„ 

VK.00{* Let i? denote the integers of X. Since & f 0 (mod p) 9 neither vx nor 
P2 E 0 (mod p) . Since R/P is a field of p or p 2 elements 9 2,1/i,2 is well-defined 
modulo P. Further, since D = (PX - P 2 ) 2 t 0 (mod P) , un = (2^ - P * ) / ^ " T2^ 
is also well-defined modulo P. 

(i) Let n = y(a, &, p ) . Then 

un = (P* - r p / C ^ - P 2 ) E 0 (mod p) E 0 (mod P) 
and 

wn + i = 1 (mod p) E 1 (mod ^) • 

Thus, p" E p2n (mod P) . Hence, 

un+ 1 - (P*+1 - r ^ 1 ) / ^ - P 2) E ( P ^ ) - r ^ ) ) / ^ - r2) = P* = 1 (mod P) 
Thus, p* E p£ E 1 (mod P) . Conversely, if v\ E p2k E 1 (mod P) for some posi-
tive integer k9 then it follows that u E 0 and w- E 1 (mod p) . Assertion 
(i) now follows. 

(ii) Now let n = a(a, &, p) . Then un = (r" - P2)/(P;L - P 2 ) E 0 (mod P) . 
This occurs only if p" E p^ (mod P) . Dividing through by P2, we obtain 

(Vr,,)" E 1 (mod P). 

Hence9 a(a9 b9 p) is the exponent of r1/r2 modulo P. 
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F u r t h e r , i f {Dip) = - 1 , then 

a O p = rP = P 2 (mod P) and G ( I ^ ) = ( r p n = r^ (mod P) , 

where a is the Frob.enius automorphism of R/P» This follows, since P 1 and P 2 

are both roots of the irreducible polynomial modulo P9 x2 - ax ~ b* Thus, if 
ri E r2 (mo& P) s w e obtain 

(r^P = r» E i»» (mod P) . 

Let Zp denote the finite field of p elements. Now, 

RIP = Zplv^]. 
In Zpfv/P1"], the only solutions of the equation xp - x = 0 are those in Zp by 
Fermat!s theorem. Assertion (ii) now follows. 

(iii) Let k = a(a, b9 p) . Then 
Mfc+1 E s^a* & * p) (mod p) E s(a, 2?, p) (mod P) . 

By the proof of (ii), v\ E vi (mod P). Thus, 

Wfc + i = (*i+1 ~ ^2+1)/(^i - *2> E (̂ i(̂ i) - r>*(r2))/(r1 - r2) 

E i3^ E s(as £>, p) (mod P) . 
The proof is now complete. 

Theorem 6, while definitive, is impractical for actually computing 

\i(a9 b9 p), a (a, b9 p), and s(a9 b9 p) . 

We will develop more practical methods of determining these numbers, although 
our results will not be as complete. The most easily applied of our methods 
will use the quadratic character modulo p and pertain to certain special classes 
of PR?s. For sharper results, we will also utilize the less convenient 2n - ic 
characters modulo p. 

A good theory of the divisibility properties of the PR u(a9 b) with re-
spect to p should give limitations for the restricted period modulo p. Given 
the restricted period, one should then be able to determine exactly the expo-
nent of the multiplier modulo p and, consequently, the period modulo p. Fur-
ther, we should be able to specify the multiplier modulo p. This will be our 
program from here on. As a first step toward fulfilling this project, we now 
present Theorems 7 and 8. Theorem 7 is due to Wyler [14] and, in most cases, 
determines \i(a9 b9 p) when a(a, b9 p) and ordp(-b) are known. Theorem 8 is 
the author's application of Wyler?s Theorem 7. 

Tfeeo/tem 7' Consider the PR u(a9 b). Suppose b f 0 (mod p). Let h = ordp(-b). 
Suppose h=2°hf

9 where hf is an odd integer. Let k = a(a9 b9 p) = 2dk\ where 
kf is an odd integer. Let H be the least common multiple of h and k, 

(i) \i(a9 b9 p) = H or 2H; g(a, b9 p) = Elk or 2H/k. 
(ii) If c £ d9 then \i(a9 b9 p) = 2H. If o = d > 0, then ]i(a9 b9 p) = E. 

This theorem is complete in the sense that ±fo-d=09 then \i(a9 b9 p) 
may be either H or 2H. For example, look at the PR w(3, -1). For all primes 
p, h = ordp(l) = 1 = 2° (1). 

If p = 13, then k = a(3, -1, 13) = 7 = 2°  (7). Further, H = [1, 7] = 7. 
By inspection, y(3, -1, 13) = 14 = 2H. 

If p = 29, then fc - a(3, -1, 29) = 7. As before, E = 1. But now we have 
y(3, -1, 29) = 7 = #. 

ThdOKem 8: Let p be an odd prime. Consider the PR u(a9 b), where b f 0 (mod 
p) . Let 7z = ordp(-£). Suppose h = 2Ghf

 9 where hf is an odd integer. Let 
k = a (a 5 &, p) = 2 ^ f , where fc? is an odd integer. Let E^ [hs k], where |>, z/] 
is the least common multiple of x and 2/. Let s = s(a9 b9 p) . 
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(i) s2 E (-£)* (mod p). 
(ii) If c = d = 0 and n(as b9 p) = H9 then s E (-b)ik + h)/2 (mod p) . 
(iii) If c = d = 0 and y(a, &, p) = 2ff, then s E -(-b)<k+h>n (mod p) . 
(iv) If e = d > 0, then s E ~(-b)k/2 (mod p). 
(v) If d > c, then S E -(-fc)*'2 (mod p). 
(vi) If c > d9 then s E ±p5 where v2 E (-b)fe (mod p) and 0£p£(p- l)/2. 

Further, both possibilities do in fact occur. 
Vrtooji 

(i) This follows immediately from (7), letting n - k. 
(ii) Let c = d = 0 and assume that \i(a5 b9 p) = H. Then, 

ordp(s) = 3(a, b9 p) = Elk = [h9 k]/k. 
Further, by (i) , 

s2 E (~b)k (mod p). 
Thus, 

s = (^)(fc+W/2 o r s E _(_b)tk+h)/i ( m o d p ) e 

In general, it is easy to see that if p is a positive Integer, 

ordp(-£)P = [h9 r]/r. 
Therefore, 

ordp((-i)(*+w/2) = [h9 (k + h)/2]/((k + fe)/2). 

Suppose ^ = (7?, k) . Let h ^ gm and k = gn9 where (m, n) = 1. Then, 

[h9 (k + 7z)/2]/((& + fc)/2) = [̂ m, (̂/72 + n)/2]/(g(m + n)/2) 

= g[m9 (m + n)/2]/(g(m + n)/2). 

Clearly, (m, m + ri) = 1 and, a fortiori, (m9 (m + n)/2) = 1. Hence, 

#[>, (?7Z + n)/2]/(g(m + n)/2) = (^(m + n)/2)/(g(m + w)/2) = TW. 
But, 

[Tz, /c]/fc = [grrzj gn] /(gn) = gmn/(gn) = m-. 
Thus, 

ordp((-20(k + h)/2) = ordp(s) = m* 
However, since 777 is odd, 

ordp(-(-i)(* + *)/2) = 2rc. 

Thus, s E (-b)ik+h)/z (mod p). 
(iii)-(v) The proofs of these assertions are similar to that of (ii). In 

calculating ordp(s) for (iv) and (v), we make use of Wyler's Theorem 7. 
(vi) To see that both possibilities actually occur, consider s(l, 1, 13) 

and s(l,l, 17). 
Now, a(l, 1, 13) = 7 and ord (-1) = 2, so o > d. By inspection, we see 

t h a t s(l, 1, 13) E 8 > (13 - l)/2 = 6 (mod 13). 

Also, a(l, 1, 17) = 9 and ord (-1) = 2. Hence, o > d* However, we now 
find that 

s(l, 1, 17) E 4 £ (17 - l)/2 = 8 (mod 17), 
and we are done. 

Unfortunately, Theorems 7 and 8 depend on knowing the highest power of 2 
dividing a (a, b9 p) and ordp(-Z?) to determine |3(a5 b3 p) and ]l(as bs p). Olir 
project will be to find classes of PRfs (excluding the special cases already 
treated) in which for almost all primes p the exponent of the multiplier mod-
ulo p, $(a9 by p) , can be determined by knowing the residue class modulo 777 to 
which a(a, bs p) belongs for some fixed positive integer mB In addition, we 
would like a set of conditions, preferably involving the quadratic character 
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modulo p, for determining a (a, b9 p) modulo m without explicitly computing 
a (a, b9 p). 

By Theorem 7, these conditions can be satisfied if either 
(i) ordp(-b)\m for a fixed positive integer m and for almost all primes 

p* or 
(ii) 2H/a(a9 b9 p) \m for a fixed positive integer m and for almost all 

primes p» 
Now, condition (i) can be satisfied for almost all p iff b - ±1. Thus, 

we will consider the PR's u(a9 1) and u(a9 -1) . If b = 1, then ordp(-2?) = 2 
for all odd primes p and, by Theorem 7, H = a(a9 1, p) or # = 2a(a, 1, p) . 
Hence, (3 (a, 1, p)|4 and 3 (a, 1, p) is largely determined if a(a, 1, p) is known 
modulo 4. Similarly, if b = -1, then $(a9 -1, p) is largely determined if 
a(a, -1, p) is known modulo 2. 

By Theorems 6 and 7, # = [ordp(p1/p2), ordp(-&)] . Hence, condition (ii) 
can be satisfied if 

(11) V\IV2 = ±^« 

Since P 1 P 2 = -£, equation (11) is equivalent to requiring that 

(12) ri/p2 = ^ i ^ -
Solvings we see that v\ = 1 or P2 = -1. But, if r2

 = ~1» then r2 = ±i and 
r1 = +i. However, this case is already treated by Theorem 4(ii). If v\ •= 1, 
then r2 •= ±1. If r2 = 1, then by Theorem 6 we see that $(a9 b, p) = 1 always 
no matter what a(a9 b9 p) is. If r2 = -1, then Theorem 6 and a little analy-
sis shows that &(a9 b, p) 12 and depends upon the residue class of a (a, b9 p) 
modulo 2. Note that if r2 = 1, then 

(13) PX = -b/v2 = -2? and a = z^ + v2 = -b + 1. 

If P 2 = -1, then 

(14) P 1 = b and a = Z? - 1. 

Hence, we will also investigate the divisibility properties of the PR's 

u(-b + 1, b) and u(b - 1, b). 

From our preceding discussion, it will be very helpful if we can find 
conditions to determine a (a, b9 p) modulo 4. The following two lemmas and two 
theorems determine the residue class of a(a, b9 p) modulo 4 for a general PR 
u(a9 b). 

Lemma 3: Let p be an odd prime. Consider the PRw(a, b) . Suppose that p|&D. 
(i) If a (a, 2?, p) = 1 (mod 2, then (-b/p) = 1. 
(ii) If a(a, £, p) = 2 (mod 4), then (bD/p) = 1. 
(iii) If a(a, b, p) = 0 (mod 4), then (bD/p) = (-b/p). 

?H,00l' Firstly, note that by (8), 

(15) v\ - Du2
n = 4(-£)n. 

(i) Let fc = a(a9 b9 p) = 1 (mod 2). By (15), 
v\ = k(-b)k (mod p). 

Since k E 1 (mod 2)3 this is possible only if (-b/p) = 1 . 
(ii) Let 2k = a(a, fc, p) . Then k = 1 (mod 2) . By (10), ̂  E 0 (mod p) . 

Then by (15), 
-Du\ = 4(-2>)* (mod p). 

If (-b/p) = 1, then clearly, (-B/p) = I. If (-b/p) = -1, then (-£/p) = -1, 
since k = 1 (mod 2). In both cases, (bD/p) - 1. 
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(iii) Let 2k = a(a5 2?s p). Then k = 0 (mod 2). By (10), v, = 0 (mod p) . 
Then by (15), 

-Du\ = 4 (-2?)* (mod p) . 

Since'fc = 0 (mod 2) , (-£>/p) = 1 in all cases. It follows that (bD/p) = (-b/p). 

TkdQtiom 9» Let p be an odd prime. Consider the PR u(a9 b) . Suppose p\bD« 
(i) If (-2?/p) = 1 and (bD/p) = -1, then a(a, 2?, p) = 1 (mod 2). 
(ii) If (-b/p) = -1 and (2?£>/p) = 1, then a(a, b, p) = 2 (mod 4). 
(iii) If (-2?/p) = (bD/p) = -1, then a (a, 2?, p) = 0 (mod 4). 

FA.00^: This follows immediately from Lemma 3. 
As we can see from Theorem 9, the only doubtful case occurs when 

(-b/p) = (bD/p) = 1. 

Lemma 4 and Theorem 10 give a new criterion for determining the restricted 
period in some instances when (-b/p) = (bD/p) = 1. 

Lemma 4: Let p be an odd prime. Consider the PR u(a9 b). Suppose pf2?£> and 
a(a, 2?, p) = 1 (mod 2). Then (-b/p) = 1. Let r2 = -fc, where 0^p£(p- l)/2. 
Then 

(16) (-22? + ar/p) = 1 or (-22? - ar/p) = 1, 

where (-22? + ar/p) denotes the Legendre symbol. 

VK.001: By Lemma 3 ( i ) , we know t h a t (-b/p) = 1. Le t fc = a ( a , 2?, p) . By ( 6 ) , 

wk = ^ f t - D / 2 + M0k+D/2 ~ ° ( m o d P ) e 

Hence, 
M0k+l)/2 E " H - D / 2 ( m ° d P ) e 

Thus, 
wa+D/2 E ±^(k-D/2 (mod P)« 

Suppose that ^(k+1)/2 =
 ru(k-i)/2 (mod P̂  • T n e n 

U(fe+3)/2 - a W(fe+l)/2 + ^U(k-l)/2 ~ aI>U(k-l)/2 +®U(k-l)/2 
E ( a r + b)u{k_1)/2 (mod p) . 

Now, by ( 7 ) , 
U(k+l)/2 ~ U(k-l)/2U(k+3)/2 = ~bU(k-l)/2 " ( a P + ^U(k-1) /2 

= ( ^ - 2&)u<2*-i>/2 = ( - 2 ? ) ( k ~ 1 ) / 2 

= rk~1 (mod p ) . 

Since k - 1 i s even, t h i s i m p l i e s t h a t (-22? - ar/p) = 1. 
Now suppose t h a t w(k + 1 ) / 2 = -^u^~i)/2 ( m o d P ) • Cont inu ing a s b e f o r e , we 

o b t a i n 
(-22? + ar)ufk_1)/2 = P k _ 1 (mod p) . 

This similarly implies that (-22? + ar/p) = 1 and we are done. 
In our statement of Lemma 4, note that 

(-22? + or) (-2b - ar) = bb. 

IkiLOKom 10: Consider the PR u(as 2?). Let p be an odd prime. Suppose p\bD 
axid (-b/p) = 1. Let r be as in Lemma 4. 

(i) If (-b/p)= (bD/p) = 1 and (-22? + ar/p) = (-22? - ar/p) = -1, then, 
a (a, 2?, p) = 0 or 2 (mod 4). 

(ii) If (-b/p) = (bD/p) = (-22? + ar/p) = (-22? - ar/p) = 1, then a(a,2?, p) 
can be congruent to 0, 1, 2, or 3 (mod 4). 

VKOO^I This follows immediately from Lemma 4. ' 
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The following examples in Table 1 from the Fibonacci sequence show the 
completeness of Theorem 10. For the Fibonacci sequence, 

a = b = 1, D = 5, bD = 5, -2b + ar = -2 + i9 and -2b - ar = -2 - i. 

TABLE1 1 

Examples from the Fibonacci Sequence in Which (-b/p) = bD/p) = 1 
and a(a, b, p) Takes on All Possible Values Modulo 4 

p (-b/p) (bD/p) (-2b + ar/p) (-2b - ar/p) a(l9 1, p) (mod 4) 

29 1 ] 
41 1 1 
61 1 1 

421 1 ] 
809 1 ] 

1601 1 ] 

L - 1 - 1 
L - 1 ~1 
L 1 1 
L 1 1 
L 1 1 
L 1 1 

2 
0 
3 
1 
2 
0 

By Theorems 9 and 109 we are so far unable to determine whether the re-
stricted period modulo p is even or odd only when 

(-b/p) = (bD/p) = (-2b + ar/p) = (-2b - ar/p) = 1. 

The next theorem will settle this case. We will use the notation [x/p]n to 
denote the 2n - ic character of x modulo p. 

Th&OKom 11» Let p be an odd prime and suppose that p - (D/p) = 2kq9 where q 
is an odd integer. Consider the PR u(a9 b) and suppose that p\bD. Let P be 
a prime ideal in K = Q(/D). Then a(a9 b9 p) E 1 (mod 2) if and only if 

r\q = (-b)q (mod P). 

If (D/p) = 1, then a(a, b, p) = 1 (mod 2) if and only if 

[*i/p]*-i E <-*>)* (mod P)-
P/l00̂ »' This is proved by Morgan Ward [13] for the Fibonacci sequence in which 
case b = 1. Our proof will be an immediate generalization of Ward's. 

First we note that uk = 0 (mod p) if and only if 

rf E (-b)k (mod P). 
This follows from the fact that 

uk = r^(r\ - r*)/(r^(r1 - r2)) = (r*k - (r^r^) I(rk(rl - r2)) 
= (r\k - (-b)k)l(rk(r^ - r2)). 

The result now follows easily. 
Assume that a(a9 b„ p) E 1 (mod 2). Then, up-(D/p) E 0 (mod p) by (5). 

Further, by (6) it follows that um\un if m\n. Thus, uq E 0 (mod p) since any 
odd divisor of p - (D/p) must divide q. Thus, by our result earlier in this 
proof, 

r\q E (-b)q (mod P). 

Conversely, if r\q E 0 (mod P), then u^ E 0 (mod p) by the same result. 
It thus follows that a(as b9 p) E 1 (mod 2). The last remark in the theorem 
follows from the definition of {r1./p']k_ . 

We will generalize the previous theorem in Theorem 12, which will deter-
mine when a(a3 b, p) E 2m (mod 2m+1). First, we will have to prove the fol-
lowing lemma. 
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Lemma 5: Consider the PR u(as b) . Let p be an odd prime. Suppose that p)[bD. 
Let k = p - (P/p) . Then 

pJw^/2 iff (-2>/p) = 1-

^W0£: This was first proved by D.H. Lehmer [4]. Backstrom [1] also gives a 
proof, 

Tk&QfiQjfn Mi Consider the PR u(a5 b) . Let p be an odd prime and suppose that. 
p - {B/p) = 2kqs where q is an odd integer. Suppose p\bV. Let P be a prime 
ideal in Z dividing p. 

(i) If (-b/p) = -1, then a(a, &9 p) = 2* (mod 2^+ 1). 
(ii) If (-b/p) = 1, then a(a9 i, p) = 2m (mod 2/7?+1)9 where 0 < m < fc,if 

and only if 
rlm + lq = (-fc)2"^ (mod P ) . 

bu t 
r f * 2 (-2>)2""1<7 (mod P ) . 

( i i i ) I f ( -b /p ) = (P/p) = 1, then a ( a , £>, p) = 2m (mod 2m + 1 ) , where 0 < 
77? < fc,if and only i f 

I>l/P]*.m-1 E (™^>2^ (mod p ) , 
but 

[^l/Plfc-m * (^) 2 m _ l £ ? (mod p ) . 

(i) This follows from Lemma 5, which implies that 

a(a, b9 p)\(p - (D/p))/2e 

(ii) First, m < ks since by Lemma 59 

a(a9 bs p)\(p - (Dip))12. 

Further, a(a9 b9 p) E 2m (mod 2m+1) if and only if p\u2mq9 but p\u2m-i • N o w 

apply the arguments of the preceding theorem. Theorem 11. 
(iii) This follows from the definition of the 2n - io character modulo p 

and part (ii). 
Note, however, that the criteria of Theorems 11 and 12 are not really 

simpler than direct verification that p is a divisor of some specified term of 
{un}. For example, in Theorem 11, we can show that a(a9 bs p) E 1 (mod 2), if 
we can show that p\uq9 where q is the largest odd integer dividing p - (D/p). 
This is equivalent to the criterion of Theorem 11. In the next section, we 
will assume that b= ±1. In this case, the criteria of Theorems 11 and 12 will 
be easier to apply. 

5. THE SPECIAL CASE b = ±1 

In this section we will obtain more complete results than those of Theo-
rems 7 and 8 for those particular PR?s for which b = ±1. We will first treat 
the case in which b = 1 in the following theorems. 

Th&0KW\ 13: Consider the PR u(a9 1). Let p be an odd prime. Suppose that 
(D/p) # 0 . If (-1/p) = 1, let i E /=T, where 0 £ i <_ (p - l)/2. 

(i) 3(a9 1, p) = 1, 2, or 4; s(a9 1, p) = 1, -1, or ±i (mod p). 
(ii) 3(a9 1, p) = 1 iff a(a5 1, p) = 2 (mod 4) and ]i(a, 1, p) = 2 (mod 

4). 
(iii) 3(a9 1, p) = 2 iff a(a, 1, p) E 0 (mod 4) and \x(a3 1, p) E 0 (mod 

8). 
(iv) 3(a9 1, p) = 4 iff a(as 1, p) E 1 (mod 2) and u(a9 1, p) E 4 (mod 

8). 
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(v) If (-1/p) = -1 and (a2 + 4/p) = 1, then a(a, 19 p) = 2 (mod 4), 
•3(a» 15 p) = 1, and y(a, 1, p) E 2 (mod 4). 

(vi) If (-1/p) = -1 and (a2 + 4/p) = -1, then a (a, 1, p) = 0 (mod 4), 
3(a9 1, p) = 2, and y(a, 1, p) = 0 (mod 8). 

(vii) If (-1/p) = 1 and (a2 + 4/p) = -1, then a(a9 19 p) = 1 (mod 2), 
3(a9 19 p) = 4, and y(a9 1, p) = 4 (mod 8). 

(viii) If (-1/p) = (a2 + 4/p) = 1 and (-2 + ai/p) = (-2 - ai/p) = -1, 
then a(a, 1, p) = 0 or 2 (mod 4) and 3(&9 19 p) = 1 or 2. 

(ix) If (-1/p) = (a2 + 4/p) = 1 and p = 5 (mod 8) 9 then a(a,.l, p) 2 0 
(mod 4) and 3(a9 1, p W 2. 

VK.OOJ: 
(i) Apply Theorem 7. Since -& = -l, ordp(-£>) = 2; hence, # = a(a9 19 p) 

or 5 = 2a(a9 1, p) . Since 3(a5 15 p) = H/a(a9 19 p) or 3(a9 1, p) = 2H/a(a, 19 p) , 
3(a9 1, p) = 1, 29 or 4. 

(ii)-(iv) These follow from Theorem 7. 
(v)-(vii) These follow from Theorem 9. 

(viii) This follows from Theorem 10. 
(ix) Suppose p = 5 (mod 8). Then I claim that a(a9 19 p) f 0 (mod 4), 

and, consequently, $(a9 1, p) ̂  2. Let k = a(a9 19 p) 9 then by part (iii) of 
this theorem, 

2k = y(a, 1, p) = 0 (mod 8). 

Since (a2 + 4/p)= (D/p) = 1, 2k\p - 1 by Theorem 6(i). But then p = 1 (mod 8) , 
which contradicts the fact that p = 5 (mod 8). 

Tk&0ti2m 14: Consider the PR u(a9 1). Let p be an odd prime such that (-1/p) 
= (D/p) = 1. Let p- 1 = 2kq9 where g is an odd integer. Let e=.(a0 + c0/DT)/2 
be the fundamental unit in Z = ̂ K/D7) , where Df is the square-free part of D. 
Let "e = -1/e. Consider further the PR u(a0 , 1). 

(i) tf(e) = -1» 2-i = em» and r2 = -e"m = (e)m
 9 where m = 1 <mod 2) and 

r. and P 2 correspond to the PR u(a9 1). 
(ii) a(a, 19 p)|a(a0, 1, p). 
(iii) Either a(a9 1, p) = a(a0, 1, p) = 1 (mod 2) or a(a9 1, p) = a(a09 1, p) 

(mod 4) . 
(iv) If [e/p]k_1 =-l9 then a(a9 1, p) = 1 (mod 2), $(as- 1, p) = 49 and 

y(a9 19 p) E 4 (mod 8). 
(v) If [e/p]fe-i= 1, then a (a 9 1, p) = 2 (mod 4)9 g.(a, 1, p) - 1, and 

\x(a9 19 p) = 2 (mod 4). 
(vi) If [e/p]fc.2^l, then a(a9 1, p) = 0 (mod 4), 3(a, 1, p) = 29 and 

y(a9 1, p) = 0 (mod 8). 

Vtiooji 
(i) Since N(r^ = P X P 2 = -1, it follows that N(e) = -19 r1 = eOT9 and 

P 2 = -e~m = (~e)m
9 where m = 1 (mod 2). 

(ii) First, we will see that e and "g" are roots of the characteristic 
polynomial 

xz - a^ 
associated with the PR u(aQ9 1). Let 

r{ = (aQ + /a* + 4)/2 and v[ = (a0 - /aJ + 4)/2 
be the roots of the characteristic polynomial. By definition of the fundamen-
tal unit e, it is easily seen that 

a2 - D'c2
Q «-4-

Hence, / a
2 + 4 = C Q / ^ . Thus, 

e = (a0 + cQ/D1)/2 = px
f and e" = (a0 - O0/DT)/2 
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Now, by Theorem 6(ii), a(aQS 1, p) is the exponent of e/e = -e2 modulo p. 
Similarly9 a(a9 1, p) is the exponent of r1/r2 = (~e2)m modulo p. It is now 
easy to see that 

(17) a(a9 19 p) = a(aQS 19 p)/(ms a(aQS 1, p)). 

Clearly, a(a5 1, p)|a(aQ9 U p ) . 
(iii) Since m is odd, it is easy to see from (17) that (iii) holds. 
(iv) By definition5 

[e/plfc.! = e^-1^2"'1 = e2* = -1 = (-1)* (mod p) . 

By Theorem 119 it now follows that a(aQS 1, p) E 1 (mod 2). By part (iii), 

a(a, 1, p) = a(a0, 1, p) = 1 (mod 2). 

The result now follows by Theorem 13(iv). 
(v) and (vi) The proofs of these parts are similar to that of part (iv). 

The advantage of Theorem 14 is that it gives results for the infinite 
number of PRTs u(a9 1) 9 for which the discriminants D all have the same square-
free part Df

9 by analyzing only one PR u(aQ9 1). When the 2n - ic characters 
modulo p in Theorem 14 are merely the quadratic characters, computations are 
considerably easier. Further9 when Df is a prime, we can make use of several 
identities to calculate the quadratic characters. The following theorem dis-
cusses this in more detail. 

ThojOJtem 15: Consider the PR u(as 1). Suppose that Df
 9 the square-free part 

of D, is an odd prime. Let p be an odd prime. Suppose that 

(~l/p) = (-1/Z?') = (p/Df) = (Dflp) = 1-

Let ex = (a1 + c1v/DT)/2 be t he fundamental u n i t i n K = Qi/D7) . 
Le t e2 = (a2 + o2/p)/2 be t h e fundamental u n i t i n Q(/p). 
Let Df - m\ + kn\ and p = m\ + kn\. 
Let 6X = (m-L + v /5T) /2 and 62 = &w2 + / p ) / 2 . 
Let £ = /=T. 

(i) (e1/p) = (6!/?) = (m1 + 2n1£/p) = (ax + 2i/p) = (m1n2 - m2n1/p) 

= (e2/^f) = (62/2f) = (77z2 + 2n2i/Df) = (a2 + 2£/Z?') 

= (77z1n2 - m2n1/DT) . 

(ii) If (e^/p) = 1 and p E 5 (mod 8), then 

a(a9 1, p) E 2 (mod 4), g(a, 1, p) = 1, and \i(as 1, p) E 2 (mod 4). 

(iii) If (e1/p) = -1 and p E 5 (mod 8), then 

a(as 1, p) E 1 (mod 2), 3(a9 1, p) = 49 and \i(as 1, p) E 4 (mod 8). 

(iv) If (e1/p) = -1 and p E 1 (mod 8), then 

a(a, 1, p) E 0 (mod 4), $(a, 1, p) = 29 and y(a, 1, p) E 0 (mod 8). 

(v) If (e^/p) = 1 and p E 9 (mod 16), then 

a(a, 1, p) 2 0 (mod 4), 3(a9 1, p) ̂  2, and y(a, 1, p) 2 0 (mod 8). 

(i) This is proved by Emma Lehmer in [6]. 
(ii) This follows from Theorem 14(v). 
(iii) This follows from Theorem 14(iv). 
(iv) and (v) These follow from Theorem 14(iv)-(vi). 
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In the case of the Fibonacci sequence, a = b = 1 and D = £'_= 5, which is 
a prime. Further, the fundamental unit of Q(/5) is e5 = (1 + /5)/2, and 5 can 
be partitioned as 

5 = I2 + 4(1)2. 

With these facts, we can easily apply the criteria of Theorem 15 to the Fibo-
nacci sequence. Wherever possible, we prefer to use the criteria of Theorems 
13 and 15, since these involve only quadratic characters rather than the higher-
order 2 - io characters used in Theorem 14. Theorems 13 and 15 suffice to de-
termine a(l, 1, p) (mod 4) and, consequently, 3(15 1, p) for all odd primes p < 
1,000 except p = 89, 401, 521, 761, 769, and 809. Further, we know from Theo-
rem 15(v) that none of 3(1, 1, 89), 3(1, 1, 521), $(1, 1, 761), or 3(1, 1, 809) 
are equal to 2. 

There are additional rules to determine (e5/p) in addition to those of 
Theorem 15. These are given by Emma Lehmer [5], [6], and [7]. Suppose that 
p = 1 (mod 4) and (5/p) = 1. Then the prime p can be represented as 

(18) p == m2 + n2, 

where m E 1 (mod 4) and 5\m or 5|n. Another quadratic partition of p is 

(19) p = o2 + 5d2. 
Further, if we express the fundamental unit of Q(/p) as ( f + ^ ) / 2 , then either 
5\f or 5\g. We then have the following criteria for determining (e5/p)i 

(20) (e5/p) = 1 iff p = 1 (mod 20) and n E 0 (mod 5), or 
p E 9 (mod 20) and m E 0 (mod 5). 

(21) (e5/p) = (-1)<*. 

(22) (e5/p) = 1 iff / E 0 (mod 5). 

Now, suppose that p and q are both odd primes and that (-1/p) = (~l/q) = 
(p/q) = (q/p) = 1. Let eq be the fundamental unit of Q( p). Emma Lehmer [7] 
has given an analogous rule to that of equation (21) to determine (eq/p) in 
terms of the representability of p or 2p by the form 

c2 + qd2 

in the cases q = 13, 17, 37,41, 73, 97, 113, 137, 193, 313, 337, 457, and 577. 
These results are applicable to Theorem 15 when Df = q. 

We now treat the PR?s for which b = -1 and \a\ _> 3. The PRfs u(a9 -1) 
for which \a\ <_ 2 are treated in Theorem 4. 

JhdQftom 16: Consider the PR u(a9 -1). Let p be an odd prime. Suppose pJ(D. 
(i) 3(a, -1, p) =,1 or 2; s(a, -1, p) E 1 or -1 (mod p) . 
(ii) If a(a, -1, p) E 0 (mod 2), then 3(a, -1, p) = 2 and |j(a5 -1, p) 

E 0 (mod 4) . 
(iii) If a(a, -1, p) E 1 (mod 2), then 3(#* -1, p) may be 1 or 2, and 

\i(a, -1, p) may be congruent to 1 (mod 2) or 2 (mod 4). 
(iv) If (2 - alp) = (2 + a/p) = -lg then 

a(as -1, p) E 0 (mod 2), g(a, -1, p) = 2, and y(a, -1, p) E 0 (mod 4). 

(v) If (2 - alp) = 1 and (2 + alp) = -1, then 

a(as -1, p) E 1 (mod 2), 3(a, -1, p) = 2, and y(a9 -1, p) E 2 (mod 4). 

(vi) If (2 - a/p) = -1 and (2 + alp) = 1 , then 

a(as -1, p) E 1 (mod 2), 3(a, -1, p) = 1, and y(a, -1, p) E 1 (mod 2). 
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Vnxw£t 
( i ) By Theorem 7, 

g(as -1, p) = #/a(a9 -1, p) or 3(a9 -1, p) = 2#/a(a9 -1, p). 

Since -£> = 1, ordp(-Z?) = 1, and H = a(as -1, p) . Thus, (3 (a, -1, p) = 1 or 2. 
(ii) and (iii) These follow from Theorem 7 and the comment following 

Theorem 7. 
(iv) This follows from part (ii) and Theorem 10(i). 
(v) and (vi) First notice that in both cases, 

(4 - a2/p) = -1 = (bD/p). 
Thus9 by Theorem 9(i), a(as -1,'p) E 1 (mod 2). Nows let k = a(a, -1, p) E 1 
(mod 2). Then9 by (6), 

(23) uk = »4„ l ) / 2 + 4 + D/2 E °  <mod P)-
Hences 

U(fe+l)/2 E ^ - D / 2 ( m ° d P)« 
F i r s t 9 suppose t h a t u,k + 1}j2 = un<_1)/2 (m°d p) • Then, 

M(k + 3 ) / 2 = " M ( k - i ) / 2 +au(k + i)/2 E ( a " 1>M(?c + i ) / 2 ( m o d p ) . 
Then, by ( 7 ) 9 

,2 
U, (k + l ) / 2 ~ W(fc + 3 ) / 2 * U(k-l)l2 - U(k + l)/2 ^ l^U(k + l)/2 

E (2 - a ) z $ + 1 ) / 2 = l**" 1 ) ' 2 E 1 (mod p ) . 
Thus, w(

2
fc + l ) / 2 E 1/(2 - a ) (mod p) , and (2 - a / p ) = 1. Now, by ( 6 ) , 

Uk + 1 = ~U(k + l)/2 - U(k~l)l2 + U ( f e + l ) / 2 VW(fc + 3 ) / 2 ' 
E -M(2k + l)/2 + to - D 4 + 1) /2 = (« " 2>4-M) /2 
E (a - 2 ) / ( 2 - a ) = - 1 (mod p ) . 

Thus, i f a ( a , - 1 , p) E 1 (mod 2) and (̂fc + 1 ) / 2
 E u(k-i)/2 ( m o d P) * t hen , 

(2 - a/p) = 1 and 3 t o , - 1 , p) = 2 . 

Now, suppose t h a t W/fe + 1 w 2 E -U/k_1)/2 (mod p) . Then, 
M(k + 3 ) / 2 = " M ( / c - l ) / 2 + a M ( k + l ) / 2 E (̂  + l)% + 1y/2 ^ ° d P ) » 

F u r t h e r , 
u(k + l)/2 ~ u(k-l)/2 m w(k + 3 ) / 2 E to + 2)w(

2
fe + l ) / 2 E l ^ " 1 ) / 2 = 1 ( m o d p ) . 

Then, ufk + l)/2 = 1/(2 + a) (mod p) , and (2 + a/p) = 1. Now, 
Uk + 1 = " W ( f c + l ) / 2 ° W ( f c - l ) / 2 + U(k+l)/2 " U(k + 3)/2 E ( ^ + 2>W(fc + l ) / 2 

E (a + 2 ) / ( a + 2) E 1 (mod p ) . 

Hence, i f ( a , - 1 , p) = 1 (mod 2) and w ( f c + 1 ) / 2 = "W(fc_i)/2 ( m o d P) > t h e n , 
(2 + a / p ) = 1 and 6 ( a , - 1 , p) = 1. 

Parts (v) and (vi) now follow immediately. 

Th&QKQJM 17: Consider the PR u(a5 -1) 9 where \a\ > 3. Let p be an odd prime 
¥u^h that (4 - a2/p) = (2 - a/p) = (2 + a/p) = 1. " Let e = (a0 + cQ/DT)/2 be 
the fundamental unit of Qi/D7) . Suppose #(e) = ~1» Consider the PR u(aQ9 1). 
Suppose a(a03 1» p) = 2ka, where a E 1 (mod 2). 

(i) r1 = (a + /D)/2 = zm , where m = 2cd\ e j> 1, and d = 1 (mod 2). 
(ii) a(a, -1, p)|a(a0, 1, p). 
(iii) If k = o5 then (a, -1, p) E 1 (mod 2) and 
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s(a, -1, p) - s(aQ9 1, p) (mod p). 

Further, 
3(^9 -1» p) = 1 if a(a0, 1., p) = 2 (mod 4). 

Moreover, 
6(a* -1, p) = 2 if a(aQ9 1, p) E 0 (mod 4). 

(iv) If k > o9 then a(a, -1, p) = 0 (mod 2) and 3(a, -1, p) = 2. 
(v) If fc < e9 then a(a, -1, p) = 1 (mod 2). If fc = 0 and <? = 1, then 

3(a, -1, p) = 2. If o + 1 and fc < o9 then 3 (a, -1, p) = 1. 

Pst£0£: 
( i) Since /17(e) = - 1 , where e i s the fundamental u n i t , and 

NCrJ = P X P 2 = -& = 1, 
it follows that v. = em where 77? is even. 

(ii) Just as in the proof of Theorem 14(ii), we see that e and ~e are 
the roots of the characteristic polynomial of the PR u(aQ9 1) • Again, just as 
in equation (17) of the proof of Theorem 14(ii), it follows that 

(24) a(as -1, p) = a(a0, 1, p)/(m9 a(a0, 1, p)). 

Clearly, a(a9 -1, p)|a(a0<p 19 p). 
(iii) Since m and a(a0, 1, p) are both even and divisible by the same 

power of 2, it follows from equation (24) that a(a9 -1, p) = 1 (mod 2). Since 
a(a0, 15 p) = 0 (mod 2), it. follows from Theorem 13 that s(aQ9 1, p) E ±1 (mod 
p). Now, by Theorem 6(iii), 

(25) s(aQi 1, p) = e«(flo,i,p)E ± 1 (mod p ) . 

Also, by Theorem 6(iii), 
(26) s(a9 -1, p) E (2,i)a(a,-l,P) = (ew)a(a0,l,P)/U,a(a0,i,p))(mod p ) # 

The last congruence follows by equation (24) in the proof of part (ii). How-
ever, since the same power of 2 divides both m and a(aQ9 1, p) , it follows that 

777/(77?, a(a0, 1, p))= r, 

where p E 1 (mod 2). Hence, 

e(a, -1, p) E [e«<«o.i.P>]* = [s(ao, 1, p ) ] ' = (±i)' 

E ±1 E s(a0, 1, p) (mod p). 

Since s(a, -1, p) = s(a0, 1, p), $(a9 -i, p) = 3(a0, 1, p). If a(a0, 1, p).E 
2 (mod 4), then B(a0, 1, p) = 1 by Theorem 13(ii). Consequently, 3(a, -1, p) 
= 1. If a(a0, 1, p) E 0 (mod 4), then 3(a0* 1, p) = 2 = 3(a, -1, p) by Theo-
rem 13(iii). 

(iv) If k > o9 it follows from equation (24) that a(a, -1, p) E 0. (mod 
2). The result now follows from Theorem 16(11). 

(v) If k < c» it follows from equation (24) that a(a, -1, p) E 1 (mod 
2). By (25) and (26), 

(27) S(a> -1, p) E [ea(«o.l,p)]«/(w.o(«o.l,p))B 

If &=0 and £•= 1, then £a(a° '1'P) E ±/=T (mod p) and a(a0, 1, p) = 4 by Theorem 
13(iv). Further, 

777/(777., a(a05 15 p)) E 2 (mod 4), 

since k = 0 and c = 1. Thus5 by (27), 

s(a9 -1, p) E (±/=T)2 E -1 (mod p), 

and hence 3(&9 -1, p) = 2» 
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Now, suppose c + \ and k < c. If k = 0, then c _> 2 and 

41777/(77?, a ( a 0 , 1, p ) ) . 
Then, a g a i n , e ^ o . ' i , P) = +/TT (moc| p ) , and by ( 2 7 ) , 

e(a, -1, p) = [e-^o.!.?)]"/^^^,!.?)) = (±/rjy = x (mod p ) . 
T h u s , g ( a , - 1 , p ) = 1 . I f fc + 0 and & < c, t h e n , 

2 J ???/ (777 s a ( a 0 , 1, p ) ) . 
F u r t h e r , by Theorem 13 and Theorem 6 ( i i i ) 9 

£ a ( a 0 , l , p ) E ± 1 ( m o d p ) e 

Thus, by ( 2 7 ) , 

s(a, -1, p) = [e«(«o.i.p)]'«/(̂ a(«o.i,P» = (ii)^ = 1 (modp). 

Therefore, $(aQ9 1, p)= 1, and we are done. 

Note that in Theorem 17 we obtain results for the infinite number of PR's 
u(a9 -1) which have the same square-free part of the discriminant Dr by con-
sidering only one PR u(aQ9 1). Since b = 1 for this PR, we are able to make 
use of Theorems 13-15. Further, note that in Theorem 17 we are able to calcu-
late the exponent k for which a(a0, 1, p) E 2k (mod 2k+1) by Theorem 12. In 
Theorem 18, we will consider the remaining case where 717(e) = 1. 

TkoAXOm IS: Consider the PR u(a9 -1). Let p be an odd prime such that 

(4 - a2/p) = (2 - alp) = (2 + alp) = 1. 

Let e = (a0 + c0/DT)/2 be the fundamental of Qi/D7). Suppose that N(e) = 1. 
Consider the PR u(a0 , -1). Suppose that a(a0, -1, p) = 2feq, where q E 1 (mod 
2). 

(i) 2»! = (a + /D)/2 = em, where m = 2ad9 a >_ 0, and d = 1 (mod 2). 
(ii) a(a, -1, p)|a(a0s -1, p) . 
(iii) If k = o and fc > 1 , then a(a9 -1, p) = 1 (mod 2) and 6(a, -1, p) = 

2. 
(iv) If fc = Q = 0, then a(a, -1, p) = 1 (mod 2). If 

s(a0, -1, p) = e2kq = 1 (mod p), 

then 3(a, -1, p) = 1; otherwise, 3 (a, -1, p) = 2. 
(v) If k > <5, then a (a, -1, p) E 0 (mod 2) and g(a, -1, p) = 2. 
(vi) If k < c9 then a(as -1, p) E 1 (mod 2) and g(a,. -l3 p) = 1. 

(i) This follows since i7(2»1) •= ̂ -^ = 1 and e is the fundamental unit 
of Qi/D7). 

(ii) It is easy to see that £ and e are the roots of the characteristic 
polynomial 

x2 - aQx + 1 = 0 

of the PR u(aQ9 -1). The rest of the proof follows as in the proofs of Theo-
rem 14(ii) and Theorem 17(ii). 

(iii) Just as in the proof of Theorem 17(ii), it follows that 

(28) a(a, -1, p) •= a(a03 -1., p)/(m* a(aQ9 -13 p)). 
Since k = c, it follows that a(a, -1, p) E l (mod 2). Since a(a0, -1, p) E 0 
(mod 2), it follows from Theorem 13(ii) that 3(a0, -1, p) •= 2 and s(a0$ -1, p) 
E -1 (mod p). By (25) and (26), it follows that 
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(29) s(a9 -1, p) = s(aQ9 -1, p) ""<w'a<«o. i. P» 

= -lw^"'0<«o. LP)) = _i (mod p), 

since k = c. Thus, 3(a, -1, p) = 2. 
(iv) It follows just as in the proof of part (iii) that a(a, -1, p) = 1 

(mod 2). By (29), 

s(a9 -1, p) = s(a0, -1, p ) " ^ ^ 1 ' ^ . 

Since k = a and s(a0, -1, p) E ±1 (mod p) by Theorem 16, it follows that 

s(aQ9 -1, p) = s(aQ9 -1, p) (mod p). 

The rest follows from Theorem 6(iii). 
(v) If k > o, it follows from (28) that a (a, -1, p) = 0 (mod 2). It 

now follows from Theorem 16(ii) that $(a9 -1, p) = 2. 
(vi) If k < o9 it follows from (28) that a (a, -1, p) E 1 (mod 2). By 

(29), 
s(a9 -1, p) = 8(a0, -1, p)w/<».°<«o.i,P>>. 

Since k< o9 ml(m9 a(a0, -1, p)) E 0 (mod 2) . Since s(aQ9 -1, p) E ±1 (mod p) , 
it now follows that 

s(a9 -1, p) E (±1)2 E 1 (mod p). 
Thus, 3(a, -1, p) = 1. 

In Theorem 18, we are again able to calculate the exponent k for which 
a(aQ, -1, p) E 2k (mod 2k + 1) by Theorem 12. Theorem 18 just reduces the prob-
lem of finding the restricted period modulo p of a PR u(a9 -1) for which b = 
-1 to that of considering another PR u(aQ, -1) for which also b - -1. However, 
since PX = em, |a0| £ |a|, and it is easier to work with the PR u(aQ9 -1) in-
stead of the PR u(a9 -1). 

6. THE SPECIAL CASE r2 = ±1 

In this section, we will conclude our paper by considering those-. PR's for 
which one of the characteristic roots is ±1. Theorems 19 and 20 will treat 
these cases. 

ThdQtim 19: Consider the PR u(-b + 1, b) 9 where b + 0 and b + 1. Then vx = 
-b9 r2 = 19 and D = (b •+ 1)2.» Let p be an odd prime such that b i 0 and 2? i -1 
(mod p). If (-2>/p) = 1, let: p2 E -2? (mod p), where 0 < r < (p - l)/2. 

(i) a (-2? + 1, b9 p) = ordp(-2>).. 
(ii) $(-b + 1, b9 p) = 1 always; s(-£> + 13 2?, p) E 1 (mod p) always. 
(iii) If (-b/p) = ~1 and p E 3 (mod 4), then 

a(-i + 1, b9 p) = y(-2> + 1, b9 p) E 2 (mod 4). 

(iv) If (-b/p) = -1 and p E 1 (mod 4), then 

a(-2? + 1, b, p) = y(-2> + 1, b9 p) E 0 (mod 4). 

(v) If (-2>/p) = 1 and p E 3 (mod 4) , then 

a(~b + 1, b, p) = y(-2> + 1, 2?, p) E 1 (mod 2). 

(vi) If (-b/p) = 1, p E 1 (mod 4), and 

(-22? + (1 - b)r/p) = (-2b - (1 - b)v/p) = -1, 

then a (-2? + 1, b9 p) is congruent to 0 or 2 modulo 4. 
(vii) Suppose that p- 1 = 2*^, where ̂  E 1 (mod 2). If (-b/p) = -1, then 

a(-b + 1, b9 p) E 2* (mod 2k + 1 ) . If (-2>/p) = 1, then a(-b + 1, 2>, p) E 2m 

(mod 2 m + 1 ) , where 0 < m < k iff 
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l-b/p]k_m = 1 (mod p), but l-b/p]k_m + 1 = -1 (mod p) . 
Further9 

a(-b + 1, 6 , p) = 1 (mod 2) i f f [-fc/p]fe = 1 (mod p ) . 

(i) and (ii) Since a=-2?+l, it easily follows that vx--b and r2 = 1. 
By Theorem 6(ii)9 it follows that 

y (-2? + 1, 2?, p) = ordp(p1/p2) = ordp(-2?). 
Further, by Theorem 6(i), 

(-2? + 1, 2?9 p) = [ordp(-2?)9 ordp(l)] = ordp(-2?) . 
The results now follow. 

(iii)-(vi) These follow from Theorems 9 and 10. 
(vii) This follows from Theorem 12 and Theorem 11. 

ThzoXem 20: Consider the PR u(b - 1, &), where b + 0 and b + -1. Then PX = 2>, 
P 2 = -1, and D = (b + I)2. Let p be an odd prime such that b £ 0 and b £ ~\ 
(mod p). Suppose p = 2kq, where & = 1 (mod 2). If (-2?/p) = 19 let r2 E -2? 
(mod p), where 0 < P < (p - l)/2. 

(i) a(2? - 1, 2?, p) = ordp(-fc). 
(ii) 6(2? - 1, 2>, p) = 1 or 2; s(b - 1, 2?9 p) = ±1 (mod p) . 
(iii) If a(b - 1, 2?9 p) = 1 (mod 2), then 6(2? - 1, 2? 5 p) = 2. 

If a (2? - 1, 2?, p) = 0 (mod 2), then 6(2? - 1, b, p) = 1. 
(iv) If (-2?/p) = ~1 and p = 3 (mod 4), then 

a(2? - 1, 2>, p) = y(2? - 1, 2?9 p) = 2 (mod 4). 

(v) If (-2?/p) = -1 and p = 1 (mod 4), then 

a(2? - 1, bs p) = y(2? - 1, bs p) = 0 (mod 4). 

(vi) If (-2>/p) = 1 and p = 3 (mod 4), then 

a (2? - 1, 2?9 p) = 1 (mod 2) and y(2? - 1, 2?, p) = 2 (mod 4). 

Hence, if p = 3 (mod 4), then ]i(b - 1, 2?5 p) = 2 (mod 4). 
(vii) If (-2?/p) = 1, p = 1 (mod 4)9 and 

(-22? + (2? - l)r/p) = (-22? - (2? - l)r/p) = -1, 

then a (2? - 1, 2?5 p) i s congruent t o 0 or 2 (mod 4 ) . 
( v i i i ) I f (-b/p) = - 1 , then a(2? - 1, bs p) = 2k (mod 2k + 1) . 

I f (-2?/p) = 1, then a(2> - 1, 2?5 p) = 2m (mod 2m + 1) , where 0 < tfz < k 

± f f I -^P l fc -m E X ( m o d P ) s b u t [-&/p]fc-« + i E - 1 ( m o d P)' 
F u r t h e r , a(2? - 1, 2>, p) = 1 (mod 2) i f f [-2?/p]fc = 1 (mod p) . 

( i ) - ( i i i ) I f a = 2? - 1, i t fo l lows t h a t r± = b and r2 = - 1 . Now, by 
Theorem 6 ( i ) , y ( f t _ ^ ^ p ) = [ o r d p ( 6 ) j o r d p ( _ 1 ) ] e 

I f ordp(2?) = 0 (mod 4 ) , then ordp(2?) = ordp(-2?) = y(2? - 1, 2?s p) . 
I f ordP(2?) = 2 (mod 4 ) , then ordp(-2?) = 1 (mod 2 ) . 

Thus, 
ordp(2?) = ]i(b - 1, b/p) = 2 • ordp(-2?). 

I f ordp(2?) = 1 (mod 2 ) , then ordp(-2?) = 2 (mod 4 ) . 
Hence, 

ordp(-2?) = 2 . ordp(2?) = y(2> - 1, 2?3 p ) . 
Now, by Theorem 6 ( i i ) 9 

a(2? - 1, 2?, p) = o r d p ( p 1 / p 2 ) = ordp(-2?) . 
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Thus, by our above argument, if a(b - 1, b9 p) = 0 (mod 2), then 

a(b - 1, b9 p) = \i(b - 1, b9 p) s and £>(b - l9 b9 p) = 1. 

If a(b -.1, i., p) = 1 (mod 2), then 

y(i - 1, b, p) = 2a (i - 19 b9 p) 9 and g(fc - 1, b9 p) = 2. 

The results of parts (i)-(iii) now follows. 
(iv)-(vii) These follow from Theorems 9 and 10. 

(viii) This follows from Theorems 11 and 12. 
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MIXING PROPERTIES OF MIXED CHEBYSHEV POLYNOMIALS 
CLARK KIMBERLING 

University of Evansville, Evansville, Indiana 47702 

The Chebyshev polynomials of the first kind9 de f ined r e c u r s i v e l y by 

tQ(x) = 1, t1(x) = xs tn(x) = 2xtn_1(x) - tn_2(x) f o r n - 29 3 9 . . . 9 

or equivalently9 by 
tn(x) ~ cos(n cos"1 x) for n •= 0, 1, ..., 

commute with one another under composition; that is 

tm(tn(x)) = tn(tm(x)). 


