
180 A NOTE ON THE POLYGONAL NUMBERS [April 

Finally, we note the following interesting fact. Since 

a0(r) = i^i-j-
and 

S0(n) = n, 

it follows from (2) that 

Sv(n) = S1(n)Pv_1(n)9 

where Pr_1(n) is a polynomial in n of degree r - 1. 
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1. WTROVUCTWN 

Polygonal numbers of o rde r k (k = 3, 4 , 5 , . . . ) a r e t h e numbers 

(1) Pnik =\[{k - 2)n2 - (k - 4)n] (n = 1, 2, 3 , . . . ) . 

If k = 4, they are reduced to the square numbers. It is clear that there 
are an infinite number of square numbers which are at a time the sum and dif-
ference and the product of such numbers, from the identity 

(4w2 + l)2 = (4tfz)2 + (4/7?2 - l)2 

= (8?^ + 4w2 + l)2 - (8m1* + 4w2)2, 

and since there are an infinite number of composite numbers of the form 4m2 + 1 
(for example, ±fm= 5j + 1, km1 + 1 is divisible by 5). 

Sierpinski [1] proved that there are an infinite number of triangular num-
bers (k = 3) which are at a time the sum and the difference and the product of 
such numbers. 

For k = 5, Hansen [2] proved that there are an infinite number of Pn,5 that 
can be expressed as the sum and the difference of such numbers. 

O'Donnell [3] proved a similar result for k = 6, and conjectured that there 
will be a similar result for the general case. 

In this paper it will be shown that their method of proof is valid for the 
general case, proving the following theorem. 

T/ieo/iem: Let a and b be given i n t e g e r s such t h a t a ^ 0 and a = b (mod 2) , and 
l e t 

(2) An = \(an2 + bn) (n = 1, 2, 3 , . . . ) . 
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There are an infinite number of An
fs which can be expressed as the sum and the 

difference of the numbers of the same type. 

2. PROOF OF THE THEOREM 

If a < 0, we obtain a set of integers whose elements are the negatives of 
the elements in the set obtained by using -a and -b instead of a and b. Hence 
we can assume a > 0 in the following. 

Let 

(3) Bn = An - An_r = \[a(2nv - r 2 ) + br] , 

where n and r are positive integers5 n > r9 and r is odd unless a is even. 

Lemma 1.' For 

(4) ?TZ = ars + r9 

where s is a positive integer such that 

(5) a2s + 2a > ~-9 

the equation 

(6) Am = Bn = A n - A n _ v 

is satisfied by the integer 

(7) n = ^s[r(a2s + 2a) + b] + p. 

P̂ tOOj}-: Solving 

j[ar2(as + I ) 2 + to(as + 1)] = -~[a(2nr - r 2 ) + 2>r] 

for n9 we have (7). 
For any integer c, <?2 E a (mod 2), so that 

s[r(a2s + 2a) + 2?] = pa2s2 + 2avs + &s E ras + as 

= (p + l)as = 0 (mod 2), 

by the conditions f or r and a, which ensures that n is an integer, and the lemma 
is proved. 

For m and n of Lemma 1, 

(8) An = Am + A ^ . 

In order to find a number of this type which is equal to some Bp, let s = 
art, for any positive integer t such that 

(9) a3r2t + b >_ 0. 
Then (5) is satisfied and from (A) and (7) we have 

(10) m = a2r2t + r9 

(11) n = aru + Pj 

where 

(12) u = |-£[r(a3r£ + 2a) + £] 

is an integer such that u _>. s by the condition (9) . 
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From Lemma 1, using u in place of s, for the integer 

(13) p = -^u[r(a2u + la) + b] + r9 

we have An = Bp. This equation, together with equation (8), provides the fol-
lowing lemma, from which we can easily establish the theorem. 

Loinma. 2: Let a, r9 and t be positive integers, where r is odd unless a is even 
and the condition (9) is satisfied. Then, m9 n9 u9 and p, which are given by 
(10), (11), (12), and (13), respectively, are also positive integers, and 

An - Am + An_r = Ap - Ap-r. 

3. THE CASE 0¥ POLYGONAL NUMBERS 

The result for the polygonal numbers of order k is given for 

a = k - 2, b = -(fc - 4) 
in Lemma 2. In this case, condition (9) is always satisfied for any positive 
integer t . 

Example 1: For v = 1, we have 

* n , fc = ^ m , /c "*" ^ n - 1,. fc = * p , ft ~ Pp - i , £ » 

where 
m• = (fc - 2)2t + 1, 

and n - < f c - 2 ) M + l, 

p = -|w[(fe - 2)2u + k] + 1 

for 

w = \t\{k - 2)H + k]. 

Let Tn, §W9 Pn, Hn9 and 5n denote PUt % for k - 39 4, 59 6, and 7, respec-
tively. Then we have 

\(t2 + 3t)+l Tt+1 + Tj(t2+3t) Tp Tp-1'-

where p = ̂ (t1* + 6t'6 + I5t2 + 18t) + 1, 

®st2 +kt+i " ®ht +1 + ^8t2 +*** ~ ^p " ^p-i5 

where p = 3211* + 32t3 + 16t2 + 4£ + 1, 

? | ( 8 1 t 2 4- 1 5 t ) + l = ^ 9 t +1 + ^ j ( 8 1.t2+1.5-*)' ^p ? p - l 9 

where p - ~(6561t4 + 2430t3 + 495t2 + 50t) + 1, 

Hl-28t2 +12t + 1 ^ 1 6 * + 1 + ^12 8t2 + 12t Hp ^p-19 

where p = 8192£4 + 1536t3 + 168t2 + St + 1, 

^f-(6 2 5 t 2 +3 5 £ ) + l = ^ 2 5 £ + l + ^ f ( 6 2 5£ 2 + 3 5£) = ^ p ^ p - 1 : 

where p = ̂ (390625^^ + 43750t3 + 2975t2 +• 98t) + 1. 
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Example. 2: For the case r = 3, t = 1, we have 

m = 9(k - 2).2 + 39 

n = 3(k - 2)u + 3, 
and 

p = ju[3(k - 2)2u + 5k - 8] + 3, 

1/^7,3 c ,7^2 

where 

u = y(9k" - 54&2 + 113k - 80), 

For k = 6, it gives 

3591 147 3588 2148916 2148913 

which is not covered by Theorem 2 of 0TDonnell [3], 
The generalized relation in Lemma 2, however, does not yield all such rela-

tions. For instance, the relation 

#2 5 = #10 + #2 3 = #3 0 7 ~ #306 

cannot be deduced from our Lemma 2. 
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