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ew* = bk + 1w + (b1 + bk+1)wk+1 (15) 

ew2k~x = 6r + £ k + 1 + (j^ + 2ifc + 1)w*. 

The norm of £ is ±1 since e = w~ik~1 + kn) and io> is a unit. We observe, however, 
that D is just the transpose of the matrix from which the norm of e was calcu-
lated. Hence5 det D = ±1, and our theorem is proved,, 

As a concluding note we remark that, if k = 2, then the theorem yields—• 
with the appropriate choice of the plus/minus signs—the identity 

Fn - (-l)" + 1Fn
3
+2 + 2(-irFn + lFn\z + (-1)"+1F„3+1. (16) 

This can also be verified as follows: Replace Fn 2 hj Fn + Fn + 1 in (16) and 
simplify to obtain 

F2 - F F - F 2 = (-l}71 (17^ 

Finallys compare (17) with the known [6, p. 57] identity 

r n - l r n + l r n \ L' 

to complete the verification of (16). 
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POINTS AT MUTUAL INTEGRAL DISTANCES IN Sn 

B. GLEIJESES 
Istituto di Matematica Applicata, Via Belzonir 7 135100 Padovaf Italy 

In radio-astronomy circles, it is sometimes jokingly speculated whether it 
is possible to place infinitely many in-phase, nonaligned antennas in a plane 
(say, vertical dipoles in a horizontal plane). Geometrically, this means plac-
ing infinitely many nonaligned points in R2, with integral pairwise distances; 
and naturally the mathematician wants to generalize to R3 and i?n. In R there 
is still a physical meaning for acoustic radiators, but not for electromagnetic 
radiators, since none exists with a spherical symmetry radiation pattern (for 
more serious questions on antenna configurations, see.-[2]). 

A slightly different problem is that of placing a receiving antenna in a 
point P, where it receives in phase from transmitting antennas placed in non-
aligned coplanar points Alt AZ9 .•• (in phase with each other); geometrically, 
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this means that the distances A^Aj are integral, and that all the differences 
PAi-PAj are also integral. We shall prove that the first question has a nega-
tive answer, and that only finitely many Ffs satisfy the second condition. 

Our proof of these facts,' set out in Paragraph 1, is only the first step in 
an inductive demonstration (given in Sections 1 to 4) of the following 

TkzOH.Qjn' In a Euclidean space of dimension n _> 2 there exist only finite sets 
of noncollinear points all of whose mutual distances are integers. 

If in all the reasoning used in Paragraphs 1-4 to prove the theorem, one 
requires that m be a positive real number rather than a positive integer, then 
one obtains the following result. 

TktOKQjm (hAJs) « If one places n + 1 antennas in phase at the vertices of a non-
degenerate (n+ l)-hedron in a Euclidean space • of dimension n >_ 2, then the set 
of points of the space from which the signals are received in phase is a finite 
set. 

RojmcUik: Two antennas are in phase if their distance is a multiple of the wave-
length; a point P receives in phase from two antennas A and B if the differ-
ences AP-BP is a multiple of the wavelength. 

The last section describes two methods (one due to Euler) to construct sys-
tems of points in the plane with integral mutual distances. 

By PQ we denote, as usual, the distance between the points P and Q. The 
phrase "points at integral distance" will be abbreviated to "points at ID." 

7. Let 0 and A be two points of the plane having distance OA = a, an integer. 
We show that the points of the plane for which OP and AP are both integers must 
all lie on a distinct hyperbolas (one of which is degenerate). As our coordi-
nate system, we take the orthogonal axes with 0 as origin and the line through 
0 and A as #-axis. Let P be a point at ID from 0 and from A9 assume P ^ 09 A9 
and set OP - m > 0, AP = m - k with m and k integers. 

Note that by the triangle inequality we have AP £ OA + OP and OP <_ OA + AP, 
which imply that -a <_k <^a. It is immediate that P lies on the hyperbola dk 
with foci at 0 and A defined by the equation 

(a2 - k2){x - a/2)2 - k2y2 = (k2/4)(a2 - k2); (1) 

its center is Af = (a/2, 0), and its axes are the lines y = 0 and x - all. It 
intersects the rc-axis at the points with abscissas x = a/2 ± k/2. We conclude 
that any point that has integral distance from both 0 and A must lie on one of 
the hyperbolas GL19 a2 * • • • » da* 

Note that for k = 0 and k = ±a, 
Eq. (1) defines a degenerate parab-
ola, and that there are a+ 1 curves 
in all. However, all of the curves 
will be hyperbolas, exactly a in 
number, if we take (x- a/2)y = 0 as 
(%a. See Figure 1. 

Now let B be a point at distance 
OB = b from 0 and noncollinear with 
0 and A. Repeating the discussion 
above for A we find that the points 
at integral distance from 0 and from 
B all must lie on b hyperbolas (B19 
82s . ..J.CBJ,. All these hyperbolas 
have as center the midpoint Bf of 
the segment OB and as axes the line Fig. 1 
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through 0 and B and the line through Bf perpendicular to it. Hence it is clear 
that none of these hyperbolas coincides with any di9 since they have different 
sets of axes. The possible points at integral distance from 09 A9 and B are 
found in the union with respect to i and j of the a^n©j-9 and hence are in num-
ber at most kab. 

2. We now give the proof of the theorem stated in the introduction for the 
case of a space of dimension 3, since the proof still has an intuitive geomet-
ric meaning that sheds light on the more general situation. 

Let J be a set of points in the space that are noncollinear and mutually 
at ID. We wish to show that X has finite cardinality. 

If the points of X all lie in a plane, we are already done. Otherwise, X 
contains four noncoplanar points 09 A9 B9 and C. We set OA = a, OB = b9 and 
OC ~ a. We fix an orthogonal coordinate system having origin at 09 the line OA 
as x-axis, and the plane determined by OAB as xy plane. With an argument sim-
ilar to that used in the case of the plane, one sees immediately that the points 
P at ID from 0 and A9 and thus in particular the points of the set X9 must all 
lie on the a + 1 quadrics SAt k defined by the equations 

SAiki (a2 - k2)(x - a/2)2 - k2y2 - k2z2 = (k2/4)(a2 - k2), k = 0, 1, ..., a. 

If 0 < k < a, the quadric SAt k is an elliptic hyperboloid of revolution around 
the line OA; the point A? (midpoint of the segment OA) is its center, and each 
plane of the pencil through OA is a plane of symmetry; among these there is the 
xy plane. For k = 0 the quadric £4,0 is the plane x = a/2 (counted twice), and 
for k = a the real points of SAta are the real points of the line that passes 
through 0 and A, 

The points at ID from 0 and B are all to be found on the b + 1 quadrics 
SBih with h = 09 1, . .. , &. For 0 < h < b9 the quadric SBt ^ Is an elliptic hy-
perboloid of revolution around the line OB; its center is at S' (the midpoint 
of the segment OB), and it has as planes of symmetry all the planes of the pen-
cil through the axis of revolution, among which there is the xy plane. For h = 
0 the quadric SBi0 is a double plane; for h = b the real points of SBtb are the 
real points on the axis of revolution. 

By analogy, the points at ID from 0 and C are found on e + I quadrics SCi l 
with I = 0, 1, ..., c. For 0 < I < o9 the quadrics SCi £ are elliptic hyperbo-
loids of revolution around the line OC9 and they certainly do not have the xy 
plane as a. plane of symmetry. For I = 0 the quadric SCi 0 is the plane through 
Cf (midpoint of the segment OC) which is orthogonal to the line OC9 this plane 
being counted twice. For I = c the real points of the quadric SCi Q are the 
points of the line OC. 

Since the points of X are at ID from A9 B9 C9 and 09 we have 

X CU(SAikC\ SBihn SCiZ) for k = 0, ..., a; h = 0, ..., b; I = 0, ..., o. 

Now if one of the three quadrics that appear in SAt k C) S Bt hC\ Sc^ is degenerate 
(k = 0, a, or h = 0, b9 or I = 0, c), it is clear that the real points of the 
intersection either are finitely many or lie in a plane. Therefore, the points 
of X contained in the intersection are finitely many. If none of those quad-
rics is degenerate, let yk h be the real intersection of SAfk with SBih$ with 
k and h fixed. 

In view of the facts that the SAtk and SBi h are real quadrics, that there 
are no real lines contained in them, and that we are considering only the real 
points of the intersection, there are only two possible cases to discuss: 

a. yk h has real points and is irreducible. 
b. y , splits into two nondegenerate conies with real points. 

In case b, a conic being a plane curve, we see that there can be only a finite 
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number of points of the set X which lie on Yfc, &^ ̂ c,& for every £. In case <x, 
if we show that yk h cannot lie entirely on any SCt £, then yk hOSc,i is a fi-
nite set of points for each £, and that will complete our proof. 

So suppose that ykt h is irreducible. Since SQ, I is not symmetric with re-
spect to the xy plane, we can write its equation in the form 

(ax +'g>y + 6)z + F(x,.y, z2) = 0, with a, (3, 6 not all 0. 

A simple calculation shows that the pairs of points symmetric with respect to 
the xy plane and which lie on the quadric are either in the xy plane itself or 
in the plane ax + $y + 6 = 0 . Since yk h is symmetric with respect to the xy 
plane, were it contained entirely in Sc ^ it would have to be contained in one 
of the two planes just mentioned. But, a quadric does not contain irreducible 
plane quartic curves. 

3. In Rn the proof is similar and is based on induction on the dimension n of 
the space. Here we give only a sketch of the demonstration. 

Let I be a set of points in Rn that are all mutually at ID. 

a. It is evident that the points that have integral distance from a point 
0 and from another point P are located on a finite number (equal to OP + 1 ) of 
quadrics SPtk with k = 0, 1, ... , OP. The quadrics SPtk for 0 < k < OP are hy-
perboloids: for k = 0 the real points of £P> 0 span an Rn~1; fork = OP the real 
points of SPy ov are the points of the line passing through 0 and P. 

b. If I does not contain n + 1 independent points, it follows that XCRn~l 

and the induction holds. Otherwise, let 0, P±9 ... , Pn be n + 1 independent 
points of J. We fix a cartesian coordinate system with origin at 0 and the 
first n - 1 coordinate axes in the i?n_1 determined by <9, P , .. ., P _ . 

C. From a it follows that the points of X are contained in the union (with 
respect to the k^) of the intersection (with respect to i-) of the quadrics 
Sp k obtained from the pairs of points 0P1, 0P2, ..., 0Pn . We can write 

n I OPi-i \ ( the points of X that come from the intersections in] 
"̂•£ fl I U ^P ic u \ which a quadric is degenerate, that is, for k^ = 0, > 

i-i\ki-i " 7 {opt. ) 
If an SP.tk. is degenerate, it is immediate that the intersection either con-
sists of a finite set of points or is contained in an i?""1, so that its contri-
bution to the cardinality of J is a finite number of points. 

d. We consider the real intersection of n - 1 nondegenerate quadrics 

n-l 

11 Sp.,k- w i t n & = (&i» •••* fcn-i) fixed. 

This is either a finite set of points or else is a curve yk of order 2n with 
real points and symmetric with respect to the hyperplane xn = 0, since all the 
quadrics that appear in the intersection possess this symmetry. 

£. We intersect the curve yk with a quadric SPntkn (kn = 1 , ..., 0Pn - 1). 
This last quadric is certainly not symmetric with respect to the hyperplane 
xn = 0. 

£. If yfe is irreducible, it cannot lie entirely on any SPnt kn (the proof 
is analogous to the case n ~ 3). Hence, the real intersection is a finite set 
of points. If yk is reducible and y, C\SPntkn is not a finite set, then an ir-
reducible component Yk °^ the curve yk lies in SPn> knS and the order of y^ is 
less than the order of yk. 
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g. If no point of X lies on y^, the proof is finished. Otherwise, let 
Pn+1 be a point of X lying on the curve y&. In this case, it is required that 
the other points of X also be at integral distance from Pn+1, and, hence, that 
they lie in the intersection of y. with the OP,., + 1 quadrics Sv 1 (&„.-, = 
0 1 np \ ^n + i>kn+l n+.i 

We can immediately exclude the case in which the quadrics are degenerate 
(see c) . Now, either the real intersection y, D Sp t k is a finite set of 
points for every kn+1 = 1, ..., 0Pn+1 - 1, in which" case the proof is already 
completed, or the real intersection of y, with a quadric is a curve whose order 
is lower than that of y, . 

By repeating the procedure outlined in g, we shall surely stop after a fi-
nite number of steps, because we find that the real intersection either is a 
finite set of points, or it contains no points of J, or it is a curve of order 
at most n - 1. In this last case it is known that the curve must lie in a sub-
space of dimension at most n - 1, and, hence, in particular, ICi?""1, 

4. We now give another demonstration of the result of Paragraph 1, which does 
not, however, give any idea of how the possible points must be distributed in 
the plane. 

Given a triangle OAB in the plane, we fix a system of coordinates as in 
Paragraph 1. Let OA = a, OB = b9 and OC = c, and let <p = angle AOB. We wish 
to find the points of the plane at integral distance from the vertices of the 
triangle. Let P be such a point, and set OP = m9 AP = m - k9 and BP = m - h9 
with m a positive integer and h, k integers. By the triangle inequality (see 
Paragraph 1), we have \k\ <. a, \h\ <_ bs and, hence, if we denote the integral 
part of a by a and the integral part of b by (35we see that k can take only the 
values 0, ±1, ..., ±a, and In only the values 0, ±1, ..., ±(3. The coordinates 
xs y of P are solutions of the system of equations: 

/ x2 + y1 = m2 

) (x - a ) 2 + y2 = (jn - k)2 (2) 

[ (x - b cos <p)2 + (y - b sin v?)2 = (m - h)2 . 

Substituting m2 in place of x2+y2 in each of the last two equations one finds 

a2 ~ k2 , fan 
x = — H 

2a a 
b2 - h2 hm ___ cos <p x 

y ~ 2b sin <p b sin *p sin <P 
which shows that for every integral triple (k9 h3 m) there is a point (x9 y). 
Now, the first equation of (2) gives a second-degree, nonidentical equation in 
m9 whose coefficients are functions of h9 k9 a9 b9 cos <P9 sin <P. (If a, b9 and 
AB are integers, cos <P is rational and m is an integral solution of a diophan-
tine equation.) Since as k and h vary one obtains (2a+1) (2(3+1) such equa-
tions, we find at most'2(2a + 1) (2g+ 1) integral values for m and a like number 
of points at ID from the vertices of the triangle. 

The generalization to Rn is analogous. Hence, we may state the following 

ThdOfiQJM: Given an n + 1-hedron in Rn with vertices C, P19 P29 .. . , Pn , then 
there are at most 

2 ft-(2a* + 1) 
i = l 

points of Rn that have integral distance from the vertices of the n+ 1-hedron; 
here a^ is the integral part of OP^ . 
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5. At this point, it is natural to ask if for any given integer n there is a 
configuration of n points of the plane that are mutually at ID. The answer is 
affirmative, and here we give a first method to construct such configurations. 

Euler gave a construction (recorded, naturally, by Dickson) of polygons 
having sides, chords, and area all rational numbers, inscribed in a circle of 
radius J? = 1: one selects n "Heron angles" a±, a2, ..., an9 that is, angles 
with rational sine and cosine, whose sum is less than T\, and then, having fixed 
a point P0 on the circumference of the circle with center at 0 and radius R = 1, 
one places P1 on the circumference in a way such that PQOPJ^ = 2ax; then P2 so 
that P10P2 = 2a2; and so on. It is evident that the sides are P0-̂ i ~ %R sin a^, 
. .. , Pi_^1Pi - 2R sin ai9 . .. , PnPQ = 2R sin(ax + a2 + • • • + an) , that the chords 
are P^Pj = 2i? sin(ai + 1 +••• + aj) for i < j, and that the area is 

A = (R/2) (P0P1 cos ax + P1P2 cos a2 + • •• + PnPQ cos a M + 1 ) ; 

here an+I = 7T--(a1 +••• + an) is obviously a Heron angle. By the addition for-
mula for the sine and the cosine, all sides and chords are rational numbers, 
and so is the area. 

Set ti = tan(a^/2) = pi/qi with pi , qt relatively prime integers. Then 

sin ai = 2piqi/{p2
i + q\) and cos a. = (q\ - p2) I\p\ + <?2). 

Hence, it is clear that It suffices to take a circle with radius 

i-l ^ 

in order to obtain a similar polygon with sides and chords all integral numbers. 
Let us see how it is possible to "improve" on the construction of Euler. 

Let PQP1 .. . Pn be a polygon, with rational sides and chords, inscribed in a 
circumference with center 0 and radius R9 not necessarily rational. Set 

Pi_1OPi = 2a; (i = 1, ..., n). 
Since the angle Pi_1Pi+1Pi = ai9a^ is an angle of the rational-sided triangle 
Pi-iPiPi+il hence, cos a^ is rational, and also 

tan2(ai/2) = (1 - cos ai)/(l + cos a^) 

is a rational number, for i = 1, 2, ..., n (here Pn+1 = P 0 ) . Set 

tan(ai/2) = (p./q.^d1/2 

with ^ a positive square-free integer and pi , ̂  integers for each £. Since 
P^^-JPl is rational, we must have i? = o^d^f2 with e^ rational (i = 1, .. ., n) . 
But then d1 = d2 = ••• = dn = d* In conclusion, we must have 

tan(ai/2) = (pi/qi)d1,z and i? = <?^1/2 

with.o rational. 
Conversely, consider a circle of radius R = od1, with c rational and <i.a 

square-free integer; it is then possible to inscribe in it a polygon PQ ... Pn , 
for any given n, with rational sides and chords. To achieve this, just select 
angles a^ such that 

a± + • ' • + an < 7T and tan(a^/2) = (pi/qi)d1'2 {pi , <^ integers), 

and recall that 

P^- = 2P sin(a^ + 1 + ... + a^) for i < j. 

Hence, we have established the following theorem. 
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ThdOKOm* A necessary and sufficient condition in order that a circle of radius 
R may circumscribe a polygon with rational sides and chords is that R = ad1^2

9 

with a rational and d a square-free positive integer. The area of the polygon 
is rational if and only if d = 1. 

6. Another method ("the kite") for constructing a configuration of 2n + 3 non-
collinear points mutually at ID9 with n fixed in advances is the following. 
One selects n Pythagorean triples x^ 
the equation x + y 

Vi 
Let 

H* that is9 integral solutions to 

a = tl Xi> bj yj n xi» °j 
i + 3 

iUxi 

For each i9 we have a2 + b\ = c\ . Fix a point 0 in the plane9 and let A he. a. 
point at distance a from 0* 

One can place n points P1 9 .„., Pn on the line 
through 0 perpendicular to 0A9 with P^ at distance 
hi from (9. Let Af be the point symmetric to A with 
respect to 0 and let §x 9 ., ., <3n be the points sym-
metric to P 1 ? ...9 Pn (see Figure 2) . The points 
09 As P19 ,.\9Pn9At

9Q19 ..., Qn are 2n + 3 non-
collinear points of the plane mutually at ID, and 
more precisely, 

AQ; = AfP; = A% AP, 

OP; = OQ; bi9 OA = 0Af = a. Fig. 

Rmo/ikz It is not necessary that the angle P̂ <9A be a right angle. It must., 
however, be an angle *P with cos <p = p/q e Q. Then one has sin v = d1/2/q with 
d a positive integer. Let 09 A9 and P be as in Figure 3S a9 b9 c axe. integral 
solutions of the equation 

s2. (4) x2 + y2 

Set 
X - x cos *P 

Y = x sin ̂  

Z = s 

Equation (4) becomes 

and then 

2/-
so that 

2xy cos ^ 

x = J/sin * = Iq/d1/2 

y = Y cos Wsin * - X = Ip/d1/2 

z = Z 

X2 + I2 = Ẑ  (5) 

J = /z2 - k2d 

I = 2/zM1/2 

Z = ft2 + k2d 

are the solutions of (5) as h and k range over Z (the ring of integers); hence, 

x = Ihkq 

y = 2/zkp - (h2 

z = h2 + k2d 

k2d) 

are integral solutions of (4), as h and k range over Z. 
Having selected n solutions of (4) , by picking n pairs 
(h9k)9 the kite method outlined at the beginning of this 
section supplies n + 2 noncollinear points mutually at 
ID (see Figure 3). 
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MEANS., CIRCLES, RIGHT TRIANGLES, AND THE FIBONACCI RATIO 

ROBERT SCHOEN 
University of Illinois,- Urhana IL 61801 

In looking for a convenient way to graph the arithmetic mean (AM) , the geo-
metric mean (GM), and the harmonic mean (HM) of two positive numbers, I came 
across a connection between Keplerfs "two great treasures" of geometry, the 
Pythagorean Theorem and the Golden Ratio, as well as several attractive geomet-
ric patterns. 

Let us take a and b as the two positive numbers to be averaged and let 

The three means are defined as 

AM (a, b) = 

GM(a, £) = 

HM(a, b) = 

a + b = k. 

a + b 
2 

Jab 
lab 

a + b 

k 
2 

2ab 
k * 

(1) 

(2) 

(3) 

(4) 

To graph the three means, recall that a perpendicular line from a point on 
a circle to a diameter of the circle is the mean proportional (i.e., geometric 
mean) of the two segments of the diameter created by the line. In Figure 1, 
diameter AB, of length k9 is composed of line segment AD = a and line segment 
DB = b. The perpendicular DE is the geometric mean. When 0 is the center of 
the circle, the AM is equal to any radius, e.g., AO and OB. To find the har-
monic mean, we proceed in the following manner. Construct a perpendicular to 
the diameter at the center 0 of height equal to DE9 say line OP,. Next, con-
struct the perpendicular bisector of AP that meets diameter AB at C. Let Q be 
the center of a circle passing through A9 B9 and point C on AB. Since OP is 
the geometric mean of AO and OC 9 we have OC - lab Ik9 and thus the desired HM is 
line segment OC. 

AD_ 
AB 

Q 0 

Fig. 1 Constructing the Arithmetic, Geometric, and Harmonic Means 


