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Coefficients in the generating difference equations (4.2),-as fc-varies, appear 
in Table 2 if we alternate + and - signs. Corresponding characteristic polynomi-
als occur in [4] as proper divisors, or as products of proper divisors. Refer to 
Hancock [1], also. 

Further, it might be noted that, if we employ the recurrence relation in (4.1) 
repeated.y, we may expand Unm binomially as 

^nm = "n-t, m-t + \ l ) ^ n - t, m-t + 1 + y 2 / ^ n ' t ' m~t+ 2 + " " " 

(2t\ 
+ [l )Un-t,m + t+l + Vn-t,m+t H < t < n9 1 <. t < TTl) . 

This is because the original recurrence relation (4.1) for Unm is "binomial" (t = 
1), i.e., the coefficients are 1, 2, 1. 

Finally, we remark that the row elements in the first column, U ,, given in 
(4.2), are related to the Catalan numbers Cn by 

(5.5) Unl = (w + l)Cn. 
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1. INTRODUCTION 

In a one-pile take-away game, two players alternately remove chips from a sin-
gle pile of chips. Depending on the particular formulation of play, a constraint 
function specifies the number of chips which may be taken from the pile in each 
position. The game ends when no move is possible. In normal (misere) play, the 
player who makes the final move wins (loses). Necessarily, one of the players has 
a strategy which can force a win. 

In this Quarterly, Whinihan [7], Schwenk [5], and Epp & Ferguson [2] have an-
alyzed certain one-pile take-away games which can be represented by an ordered 
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triple (ji, w9 f). Here n e Z+ u {0}, w e Z + , and f : Z + -> Z+ is nondecreasing. On 
the initial move in the game (n:, w9 f)9 a player takes from 1 to w chips from a 
pile of n chips. Subsequently, if a player takes t chips from the pile, then the 
next player to move may take from 1 to fit) chips. In [3], the author provides an 
analysis of a generalization of this formulation of a one-pile take-away game so 
as to allow for play with two piles of chips. 

The purpose of this paper is to present a formulation and an analysis of an-
other type of one-pile take-away game. The formulation in this paper is quite 
dissimilar to that studied in [2], [5], and [7]. In the present formulation, the 
constraint function f is a function of two variables. The first variable is equal 
to one plus the number of moves made since the start of play. Think of this vari-
able as representing time. The second variable represents the number of chips in 
the pile, that is, pile size. We shall call this formulation the one-pile time 
and size dependent take-away game. It is nicknamed tastag. 

For example, suppose the constraint function is 

fit, n) = t + 1 + [|]. 
Here, [x] denotes the largest integer less than or equal to x. At the start of 
play (time t = 1), suppose that the pile contains 211 chips. The first player to 
move may take from 1 to 107 chips. Suppose that he takes 51 chips, say, so as to 
leave 160 chips in the pile. Then his opponent may reply (at time t = 2) by tak-
ing from 1 to 83 chips. In Section 4, it will be shown that for play beginning 
with a pile of 211 chips, the second player to move can force a win. In Section 
5, it will be shown that if the first player opens play by taking 51 chips, then 
the second player possesses fifteen winning replies. To force a win, the second 
player should take from 43 to 57 chips. If the first player opens by taking 107 
chips, say, then the second player has a unique winning reply, namely, to take a 
single chip. 

2. THE RULES OF THE GAME 

Let f:Z + X Z+ -> Z+. Suppose that the pile contains n chips after t - 1 moves 
have been made, t >. 1. On the tth move, the player to move must take from 1 to 
fit, n) chips. it, n, f) will denote the position consisting of a pile of n chips 
after t - 1 moves have been made, with play governed by the constraint function f. 

In this paper we restrict ourselves to tastags for which the constraint func-
tion f satisfies the following growth condition. 

CONDITION 2.2: V O J , V« > 1 

fit, n) < fit, n + 1) <. fit, n) + 1. 
Set 6 = {f\fiZ+ X Z+ -+ Z + and f satisfies Condition 2.1}. 

Define the normal outcome sets k+ and p+ by 

k+ = {it, n, f)]t'>_ 1, n _> 0, / e e and the first player to 
move in it, n, f) can force a win in normal play} 

and 
p+ = {it, n, f)\t _> 1, n >_ 0, f e e and the second player to 

move in (t9 n9 f) can force a win in normal play}. 

We define the misere outcome sets fe. and p_ just as we define k + and p+ , respec-
tively, except that we replace "normal" by "misere" in the definitions. 

For f e e9 define f:Z+ X Z+ -> Z+ by 

f(t9 n) = f(t9 n + 1) Vt > 1, Vn > 1. 

In a straightforward manner, it can be shown that' / e 6. It is also not difficult 
to verify the following: 
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PROPOSITION 2.1: If t > 1, n > 1, and f e e , then (t, n, f) e k. if and only if 
(t, n - 1, f) e h+-. 

An immediate consequence of Proposition 2.1 is the following: If we can ana-
lyze .(£., n, f) for normal play for each t > 1, n > 0, and f e e , then we can ana-
lyze (£, n, f) for misere play for each t _> 1, n _> 0, and / e C. 

In this paper attention is restricted to normal play. Our aim is the follow-
ing: 

1. Determine the outcome sets k+ and p+. 
2* For each (t, n, f) e h+, prescribe a winning move for the player who moves 

next. 

3. THE GAME TABLEAU 

For fixed f e e , to analyze all one-pile tastags (t, n, f), t _> 1, n _> 0, we 
construct a game tableau for f. The game tableau is an infinite array 

(Et,r) t, r = 1 

whose entries belong to the set Z + U {0, °°}. For each t _> 1, let Dt denote the 
tth diagonal of the tableau. That is, Dt = (Et + i-r, r)r=»i- For example, in the 
tableau in Figure 3.1, DQ = <2, 3, 5, 0, 0, 0, 0, 0>. 

In the sequel, the following conventions are adopted: 

i. E^_X = - u u = o n > i . 
2. max Z = °°. 
3 . n + ^ = o o \ / n e Z + u { 0 9 o o } . 
4 . The domain of / i s extended from Z+ X Z+ t o Z+ X (Z+ U {o°}) , and 

f(t9 °°) = «, \/t >L 1. 

Cons t ruc t t h e game t a b l e a u for / by double i n d u c t i o n as f o l l o w s : 
A. The s o l e e n t r y of D1 i s E11 = max{n\f(l, n) _> n } . 
B. Suppose t h a t t h e e n t r i e s fo r d i a g o n a l s D1, D2, . . . , Dt-\ have been computed 

fo r some t _> 2 . Then compute t h e e n t r i e s of d i a g o n a l Dt a s f o l l o w s : 

1. #tj x = m a x { n | / ( t , n) J> n } . 
2 . Suppose t h e e n t r i e s Et + 1_U} u, u = 1, 2* . . . , r - 1, have been computed for 

some r, 2 £ r <_ t . 

a. I f tft_r+2,r-i - 0 , put tft._r+1>r = 0. 
b . I f Et_r+2t r_ i > 0 and r i s even, pu t 

' 0 , i f Et_r+2>r_1 + 1 £ tft_p+1>w fo r some u, 1 £ w <_ *»- 1. 

^t-r+2, r-i + X> otherwise. 

c. If £'t_r+2, r- i > 0 and r is odd, put 

0, if #t_r+2,r-i- + max{n .> l|f(t - r +. 1, #t-r+2f r-i + n) j> w} 

<. Et-r+i,u f° r s o m e w, 1 < « < r - 1. 

^ - r + 2 , r - l + m a X ^ •> l \ f ( t * 3? + 1» ^ - r + 2 , r - l + «) >: *> > 

otherwise. 

Let us illustrate this construction with an example. 

EXAMPLE 3.1: Let f:Z+ X Z+ -> Z+ be defined as follows: 

( 3 for n <. 20, 
jf(l, w) - { 

( w - 17 for n• > 21. 

Et- r+ 1, r 
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For t = 2 or 3 , f(t, n) = 5 - t + [ | 1 V n >. 

( 1 fo r 1 < n < 9, 

[n - 9 for n > 10. 
/(4, n) /(5, n) = 4. /(6, n) = 1 + [?] Vn >. 1. 

For 7 < t < I35 f{t, n) •= 2. For £ >. 14, /(£, n) = n\/n _> 1. Condition 2.1 is 
satisfied by /. The complete game tableau for / is given in Figure 3.1. 

> < ^ 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

1 

3 
4 
3 
1 
4 
1 
2 
2 
2 
2 
2 
2 
2 
0 0 

oo 
oo 

2 

5 
0 
0 
5 
0 
3 
3 
3 
3 
3 
3 
3 
oo 

0 
0 
0 

3 

0 
0 

10 
0 
7 
5 
5 
5 
5 
5 
5 
oo 

0 
0 
0 

• 

4 

0 
11 
0 
8 
0 
6 
6 
6 
6 
6 
oo 

0 
0 
0 

. . . 
« • . 

5 

14 
0 

15 
0 

10 
9 
8 
8 
8 
oo 

0 
0 
0 

. . . 

6 

0 
16 
0 

11 
0 
0 
9 
9 
oo 

0 
0 
0 

. . . 

7 

19 
0 

19 
0 
0 

13 
11 

oo 

0 
0 
0 

. . . 

8 

0 
20 

0 
0 

14 
0 
oo 

0 
0 
0 

. . . 

9 

oo 

0 
0 
oo 

0 
oo 

0 
0 
0 

e . . 

10 

0 
0 
0 0 

0 
oo 

0 
0 
0 

. . . 

11 

0 
oo 

0 
0 
0 
0 
0 

. . . 

12 

0 
0 
0 
0 
0 
0 

. . . 

• • 

Fig. 3.1. The game tableau for Example 3.1 

For a large class of constraint functions in <B, the corresponding game tab-
leaux have no zero entries. For any such game tableau, the entries of each row 
(column) form a strictly increasing (nondecreasing) sequence of positive integers. 
The tastags generated by such constraint functions will be called escalation tas-
tags. Set 

8 = {f e C|the game tableau of f has no zero entries}. 

EXAMPLE 3.2: Consider the constraint function f(t) = t + 1 + [n/2] mentioned in 
Section 1. For t >. 1 and r _> 1, it can be shown that 

[2(r + t) - 3]2(r + 1)/2 - 2(t - 2) if v is odd, 

[2(r + t) - 3]2r/2 - It + 3 if r is even. 

f e £. A portion of the tableau of f Is shown in Figure 3.2. 

EXAMPLE 3.3: On page 124 of [6], Silverman introduces a game called Triskideka-
philia Escalation. It was the challenge of this game for an arbitrary pile size 
n >_ 0 that motivated the present study of one-pile tastags. This game is equiva-
lent to the one-pile tastag (1, n, f), where f(t9 n) = t + 1. f e £>. For t _> 1 
and r _> 1, it can be shown that 
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( (^T^) + (* + ^i11-^) ~ l if ̂  is odd, 

( (f)2 + (t + 2)(f) lf V ±S even-
A portion of the game tableau of / is shown in Figure 3.3. 

> < s 

1 
2 
3 
4 
5 
6 
7 
8 

1 

4 
6 
8 
10 
12 
14 
16 
18 

2 

7 
9 
11 
13 
15 
17 
19 
21 

3 

22 
28 
34 
40 
46 
52 
58 
64 

4 

29 
35 
41 
47 
53 
59 
65 
71 

5 

74 
88 
102 
116 
130 
144 
158 
172 

6 

89 
103 
117 
131 
145 
159 
173 
187 

7 

210 
240 
270 
300 
330 
360 
390 
420 

8 

241 
271 
301 
331 
361 
391 
421 
451 

Fig. 3.2. A portion of the game tableau for Examle 3.2 

t ^ 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

2 

4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

3 

7 
9 
11 
13 
15 
17 
19 
21 
23 
25 

4 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 

5 

14 
17 
20 
23 
26 
29 
32 
35 
38 
41 

6 

18 
21 
24 
27 
30 
33 
36 
39 
42 
45 

7 

23 
27 
31 
35 
39 
43 
47 
51 
55 
59 

8 

28 
32 
36 
40 
44 
48 
52 
56 
60 
64 

9 

34 
39 
44 
49 
54 
59 
64 
69 
74 
79 

10 

40 
45 
50 
55 
60 
65 
70 
75 
80 
85 

Fig. 3.3 A portion of the game tableau for Example 3.3 

4. DETERMINING THE NORMAL OUTCOME SETS 

From the game tableau of /, fee, the following theorem reveals the outcome 
set to which any tastag (t, n, f) belongs. 

THEOREM 4.1: If t 2. 19 n >. 1, and fee, then (t, n, /) e k+ if and only if 
m±n{r\Ettr 2. ri) is odd. 

As an illustration, return to Example 3.1. Is (1, 22, f) a first-player win? 
He r e m±n{r\EUp >. 22} = 9, 

which is odd. Thus, the first player to move in (1, 22, f) can force a win. 
How about the position (5, 11, f) ? Here 

min{p|£'5jr >_ 11} = 8, 
which is even. Thus, the second player to move in (5, 11, f) can force a win. 

As a final example, return to the tastag (1, 211, f) mentioned in Section 1: 
f(t, ri) = t + 1 + [nil], A portion of the game tableau for / is shown in Figure 
3.2. We observe that min{r|#i,r 1 211} = 8, which is even. As asserted in Sec-
tion 1, (1, 211, f) is a second-player win. 



56 ONE-PILE TIME AND SIZE DEPENDENT TAKE-AWAY GAMES [Feb. 

In the author's doctoral dissertation [4], it is shown that if f e C, then 
min{z»|i?lf.r >_ n} is, in fact, the normal remoteness number of (t, n, f). Moveover, 
if f e S, then min{2»| 1̂ r _> n} is also the normal suspense number of (£, n, f) ,* 

5. AN OPTIMAL STRATEGY 

The proof of Theorem 4.1 will be constructive. Suppose that (t9 n9 f) e h+. 
Set $(t, n, f) = m±n{r\Et$r J> n}. We prescribe the following winning move: 

1. Take n - Et+U z(t,n,f>-i chips if n > Et+U 3(t,n,/) - i-
2. Take a single chip if n <_ Et+lt $(t,n,f)-i • 

As an illustration, return again to Example 3.1. 
First consider the position (3, 19, f). 3(3, 19, f) = 7, so (3, 19, f) e h+. 

19 > ll = £'it> 6. The player whose turn it is to move should take 19 —.11 = 8 chips, 
Since jf(3, 19) = 8, seven other moves are also possible. Observe that each of the 
seven other moves is "bad," since 3(4, 19 - u9 f) = 9Vw, 1 £ u ± 7. 

Next consider the position (4, 13, f). 3(4, 13, f) = 9, so (4, 13, f) e k+. 
13^.14 = E5i8. The first player to move can make a winning move by taking a sin-
gle chip. /(4, 13) = 4 . Note that taking 2 chips is also a winning move. How-
ever, taking either 3 or 4 chips is a losing move. 

Let u denote the move in which u chips are taken from the pile. The set of 
winning moves from the position (t, n, f) is 

{u\l <_ u <_ f(t9 n) A n, and (t + 1, n - u9 f) e p+} 

= {u\ 1 <_ u <_ f(ts n) An, and g(£ + 1, n - u9 f) is even}. 

When this set is nonempty, Condition 2.1 and a short argument assures us that it 
is a set of consecutive integers. 

Return to the tastag discussed in Section 1. From Figure 3.2 we observe that 
3(2, 160, f) = 7, so (2, 160, f) e k+. The set of winning moves from (2, 160, f) 
is 

{w|l £ u <_ 83, and 3(3, 160 - u9 f) = 6} = {43, 44, ..., 57}. 

Next note that 3(2, 104, f) = 7. The set of winning moves from (2, 104, f) is 

{u|l <_ u £ 55, and 3(3, 104 - u9 f) = 6} = {l}. 

6̂  THE PROOF OF THEOREM 4.1 

Our proof of Theorem 4.1 takes the usual approach. Pick any f e e . To show 
that a set A satisfies 

A = {(t, n, /) |t >. 1, n >. 0} n fe+, 

it suffices to show each of the following: 

a. No terminal position is in A. 
b. For each position in A9 there exists a move to a position not in A. 
c. For each position not in A9 every move results in a position in A. 

Before proving Theorem 4.1, we introduce some notation and prove two lemmas. 
For each t _> 1, n _> 05 define 

a(t, n, f) = max[{0} u "O|0 < Et,r < n}]9 
3(t, n9 f) = mln{r\Et,r >. n}9 and 
y(t, n, /) = max[{0} u {r\r is even, Et+]>r > 09 r < 3(t, n, t)}]. 

^Chapter 14 of [1] is a good reference for the reader who is not familiar with 
the concepts of remoteness and suspense numbers. 
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Since fit, n) > 1 V t > 1, V n >_ 19 it can be shown that 3(£, n, f) < °o [±n fact, 
B(t, n, f) <_n] V t > 1, V n > 0 . Define the set of "followers" of position 
(£9 ^5 /) to be 

W , ns /) = {(t + 1, n - u, f)\l <_ u <_ fit, n) A n}. 

For each I _> 0, define the set 

4 £ = {(£, n9 /) |t >: 1, n _> 0, B(t, ns /) is odd}. 

Theorem 4 . 1 a s s e r t s t h a t 

{it, n5 f)\t >_ 1, n >. 0} n fe+ = | J 4 2 l . + 1 . 
2> = 0 

Demanding that / satisfies Condition 2.1 forces the game tableau of f to pos-
sess two nice properties. Lemma 6.1 reveals the two properties. 

LEMMA 6.1: Suppose f e e , t >_ 1, and r _> 0. 

a. If 0 < tftf 2p+i < ̂ 5 then n - /(£, n) > Et+it lv. 
b. If 0 < n <. Eti 2r+l , then n - fit, n) <_ Et+U 2r . 

PROOF: a. By the manner in which the tableau is constructed9 

%t, 2r+l > 0 ^ E t , 2r+l = # £ + 1, 2 r + <$ 9 

where 6 = max{nf | / ( t , Et+i} 2r + n f ) 2L ^ f } . Observe t h a t 

(1) fit, Et+U 2 r + 6 + 1) < 6 + 1. 

Since n > 2?^ 2 r + u w e have n - Et+l> 2r - 6 - 1 J> 0. Thus, 

(2) / ( * , n) = / [ * , G ? t + 1 , 2r + 6 + 1) + in - tft+lf 2p - 6 - 1)] 

<- / (*» £*+l, 2r + 6 + 1) + (n " £ t + 1 , 2r - 6 - 1) 
by Condition 2.1. (1) and (2) yield 

fit, n) < (5 + 1) + (w - £ t + l f 2P - 5 - 1) = n - Et+U lv . 

Thus, n - / ( £ , n) > tft+1, lv • 

b . Since S't, 2r+I > 09 we have Z?t, 2r+i = #£+i , 2r + 5 , where 6 i s as i n 
t he proof of p a r t (a) of t h e Lemma. I f n - 1 <_ Et+li 2r , then t h e a s s e r t i o n i n p a r t 
(b) of t he Lemma i s t r i v i a l . So suppose n > Et+ly 2r + 1. Then l<n-Et+lf2r<^ 
6, and so 

fit, n) = f{t, Et+li 2r + in - Et+U 2r)] _> n - Et+U 2r . Q.E.D. 

The second lemma we shall need is the following. 

LEMMA 6.2: Suppose f e e , t >_ I, P > 1, and Et>u < °° for each u, l £ w < 2r. I f 
Et+l> 2r > 0, then Eti 2r+l > 0. 

PROOF: Suppose EtiU < °° for each u, 1 £ w <_ 2 P , and suppose £ 7
t + l s 2r > 0 . Then 

^ t , 2r+1 = 0 i f and only i f 

lu, 1 £ w <. 2 P 9 a ^ ^ M 2: ^ t + i , ir + ^» 
where 6 = max{n|/(t9 Et+it 2r + n) _> n}. Assume that there exists such an integer 
w. We consider two cases. 

Case 1. u is even. Here 3rr, 1 £ pf £ r, 9U = 2rf. Since 

%t+l, 2r > ^ ' ^ t + 1 , 2 r ' - l < ^ t + 1 , 2r> • 
Thus 

# t + l , 2 r + <S -> ^ t + 1 , 2 r + 1 > E t + l , 2v'-\ + X = E t , 2r> = ^ t , M » 
a contradiction. 
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Case 2. u is odd. Here lr'9 0 <_ r' < r.9 zu= 2rr + 1. Let 

6' = max{n|/(t, Et+ij 2rt + ft) _> ft}, 
s°  #t, 2r'+i = Et+U 2r, + 6'. Then 

f[t9 Et+lt2r + (#t , 2r' + l ~ #*+l , 2r + 1)1 

= / [ * . * t + l . 2r + • (£*+! , 22.' + 6 ' - ^ t + 1 . 2r + D ] 

- / ( £ , Et+U 2r, + 6 ' + 1) > / ( * , Et+U 2r, + 6 ' ) by Cond i t ion 2 .1 

>. 6 f by t h e d e f i n i t i o n of 6 ' 
= # t , 2r' + i ~ Et+lt 2r, s i n c e Ett 2rt+i = Et+it ir' + 6 ' 

>..£*, 2r '+i " # t + i , 2r + 1 s i n c e ^ t + l f 2r > 0 = > # t + l f 2r > Et+lt 2 r , . 

Thus, 6 2: Eti 2r' + i - •S't+i, 2r + *• Consequent ly , 

#t + 1, 2v + °* 2. #*+l, Iv + (#*, 2r' + l " Et+1, 2*> + *) > %t, 2r' + l = #t, u , 

a contradiction. 
In both Case 1 and Case 2, a contradiction has been observed. Thus, it must 

be that Etj 2r+l > 0. Q.E.D. 

PROOF OF THEOREM 4.1: Consider the set 
00 

A m U A2p + 1. 
r = 0 

To prove Theorem 4.1, it suffices to establish statements (a), (b), and (c) in the 
first paragraph of this section,. Figure 6.1 is intended as a guide. 

- • • ̂ t,y + i * * * Ett(x . . . EttQ . . . 

• ' • %t+ 1, y • * • ^fc+l.ct-l • • • ^£+1,8-1 • • • 

Fig. 6.1. A portion of the game tableau for f 

a. The set of terminal positions is {(£, 0, f)\t >_ 1}. 

$(£, 0, f) = 0 V t >_ 1, since tftj 0 - 0 V t _> 1. 

Thus, {terminal positions} (1 A - 0. Statement (a) holds. 

b. Suppose (fr, n, f) e A. Then 3(t, ft, f) is odd. Let a = a(t> ft» f) and 
3 = 3(£, ft, f). There are two cases to consider. 

Case Jb.l. n > Et+1 3_j. Since 0 < ft <_ Ett$9 part (b) of Lemma 6.1 indicates 
that ft - /(t, n) £ #t+1' B-I« Thus, in position (£, n, /)» a player may take 

chips to leave the position (t + 1, #t+li B-i» /) • 0(t + 1, #t+i,8-i> /> - B - 1 
is even, so 

<* + *' gt+i, B-i' /) < ^ ' 

Case h.2. n <_ Et+l g.^ Taking a single chip leaves the position 

(t + 1, ft - 1, f). 

Let 3 ' = 3(£ + 1, n - 1, / ) . S ince Et+lt 6 _ i > ft - 1, we have 3 ' £ 3 - 1* and so 
3 f + 1 5 3 . 
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Assume t h a t (t + 1, n - i , f) e A. Then 3 f i s odd. Set #*,B '+i = Et+i,f$< + 1 -
Since Et+1^r _> re - 1 s we have 

Consequently, 

By the maximality of a, the minimality of 3* and (4), we conclude that Et,&f + i > 0 
(and, of course, Eti B» +1 = #tf g'+i). But B'+l is even, 3 is odd, and 3f'+ 1 £ 3. 
Hence, we also have 3'+l < 3. 3f+l < 3 and (3) contradict the minimality of 3. 
We conclude that ( t + l 9 n - l 9 f ) £ A . 

We have shown that, in both Case b.l and Case b.2, statement (b) holds. 

c. Suppose (t, re, /) j A. If re = 0, statement (c) is vacuous. So assume 
re > 0. Observe that 3 is even and that 3 > 0. Let y = y(£, re, / ) . If y = 0, then 
Et,y + i > 0. If y > 0, then y even and Et+i)Y > 0 imply that Etsy + i > 0 by Lemma 
6.2. Thus, in either case, Et>y + i > 0. So y + 1 £ a by the maximality of a, the 
minimality of 39 and the fact that a + 1 < 3. 

Now 0 < Etiy + 1 £ Et, a < re and y even imply that 

(5) re - f(t9 re) > Et+l>y 

by (a) of Lemma 6 . 1 . S ince re £ Et> B = £' t + 1} e _ r + 1, re - 1 £ ^ t+ i, 6 - i- Combine 
t h i s w i t h (5) t o ge t 

Et+l,y K n " W - Et+1, 3 - 1 V u 9 -1 1 w 1 / (*> n ) -

Thus, £>(t + 1, re - w, /) is odd V u B 1 £ u.£ f(t9 re). We have shown that 

W , n9 /) C A9 

which verifies statement (c). Q.E.D. 
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Horadam [2] defined and studied in detail the generalized Fibonacci sequence 
defined by 


