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In [7], Silvester shows that a number of the properties of the Fibonacci se-
quence can be derived from a matrix representation. In so doing, he shows that if 

then 

(1) Ar 01 = fun * 

ln + k + °ian+l + + a k-lun+k-l 

ck_1 are constants). Given values for the first k terms, a0, a19 . .., 
(2) uniquely determines a sequence {an}, In this context, the Fibonacci se-

where uk represents the kth Fibonacci number. This is a special case of a more 
general phenomenon. Suppose the (n+/c)th term of a sequence is defined recursive-
ly as a linear combination of the preceding k terms: 

(2) 

ak-i'-
quence {uns may be viewed as the solution to 

an+2 ~ an + an+l 

which has initial terms uQ = 0 and u1 = 1. 
Difference equations of the form (2) are expressible in a matrix form analo-

gous to (1). This formulation is unfortunately absent in some general works on 
difference equations (e.g. [2], [4]), although it has been used extensively by 
Bernstein (e.g. [1]) and Shannon (e.g. [6]). Define the matrix A by 

1 0 
0 1 
0 0 

'0 ""I ^ 2 ^fe-2 ^k-1 

Then, by an inductive argument, we reach the generalization of (1): 

(3) An 

fao 
a l 

• 

[ak-\ 
= 1 

an 
an + l 

Just as Silvester derived many interesting properties of the Fibonacci numbers 
from a matrix representation, it also is possible to learn a good deal about {an} 
from (3) . We will confine ourselves to deriving a general formula for an as a 
function of n valid for a large class of equations (2). The reader is invited to 
generalize our results and explore further consequences of (3). 

Following Shannon [5], we define a generalized Fibonacci sequence as a solution 
to (2) with the initial terms [a0, ..., ak_1] = [0, 0, ..., 0, 1], Equation (3) 
then becomes 

an + k 

An 
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More specifically, a formula for an is given by 

(4) an == [1 0 0 ... 0]An 

1 

When A can be brought to diagonal form, (4) is easily evaluated to provide the de-
sired formula for 

As many readers have doubtless recognized, A is the companion matrix for the 
polynomial 

(5) pit) * k - l * 
k-l tfc-2 

'k-l1 

In consequence, pit) is both the characteristic and minimal polynomial for A, and 
A can be diagonalized precisely when p has k distinct roots. In this case we have 

(6) pit) - it - rjit - r2) ... it - rk) 
and the numbers r19 r2, ...5 rk are the eigenvalues of A. 

To determine an eigenvector for A corresponding to the eigenvalue vi we con-
sider the system 

(7) (A - rtI)X = 0. 

As there are k eigenvalues, each must have geometric multiplicity one, and so the 
rank of iA - VJI) is k - 1. The general solution to (7) is readily preceived as 

X = xx 

vk-i\ 

where x± may be any scalar. For convenience, we take x1 = 1. 
Following the conventional procedure for diagonalizing A, we invoke the fac-

torization 
A = SDS'1, 

where S is a matrix with eigenvectors of A for columns and D is a diagonal matrix. 
Interestingly, the previous discussion shows that for a polynomial p with distinct 
roots rl9 r29 rk, the companion matrix A can be diagonalized by choosing S to 
be the Vandermonde array 

Vir13 n ) -

"1 
r l 

A 

I rk'1 

1 
r 2 

A 

< 
-1 

1 

^ 3 

A 

;*- i 

. . . 

. . . 

i 
r% 
*i 

r k-l 

Related results have been previously discussed in Jarden [3]. 
To make use of the diagonal form, we substitute for A in (4) and derive the 

following: 
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an = [1 0 0 ... 0]F(pls p29 ..., rk)DnV^(r19 r2, 9e.9 r,) 

1 

Noting that the product of the first three matrices at right is [r" r£ • • -
we represent the product of the remaining matrices by 

2/2 

and a much simpler formula for an results: 

t = 1 

Now, to determine the values z/ , .. . . , y , we solve 

*fc> 

2/2 

; 
A„ 

= 

" o l 
0 

:° 

1 J 
F(P1 5 r29 

By Cramer1s rule, z/m is given by the ratio of two determinants. In the numerator, 
after expanding by minors in column m, the result is 

(-l)m+fcdet 7(r15 •.. , r. ) , > L m - 1 > -1 m + 1 » • • * > ^fc -

while the denominator is det V{v1, . . . , r..). Thus, the ratio simplifies to 

hn 
(-D m + k 

(-ir .no * < > • 

The final form of the formula is derived by utilizing the notation of (6) and rec-
ognizing the last product above as p?(rm)* Substitution in (8), and elimination 
of the factors of (-1) complete the computations and produce a simple formula for 

(9) . • an = 2^ n t (r \ 
i = l P v•z^ ' 

We conclude with a few examples and comments that pertain to the case k = 2. 
Taking o0 "1, the sequence {an} is the Fibonacci sequence. Here 

pit) •5 £ 1 - /5 

and p'(£) = 2£ - 1. By using (9), we derive the familiar formula: 

'i + /sV (i - /lY 

/5 -/5 

Consider next the case e0 = c 
average of the two preceding terms. Now, 

1/2, in which each term in the sequence is the 
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pit) = t2 - \ t - | = (t - l)[t + | ) . 

This time, (9) leads to 

«-iR-*r} 
More generally for k = 2, the discriminant of p(£) will be D = c^ + 4c0 and (9) 
produces the formula 

(c± + /D)n - (̂  - /D)n 

2n/D 

If Z) is negative, we may express the complex number c1 4- /D in polar form as 

Z?(cos 6 + i sin 0). 

Then the formula for an simplifies to 

_ ('R\n-1sixi nQ 
an ~ \ 2 / sin 9 ' 

Thus, fo r example, w i t h c1 = c0 = - 1 , we o b t a i n 

an = ( i \ n - i 2 . (nir\ 

This sequence {an} is periodic, repeating 0, 1, -1, as may be verified inductively 
from the original difference equation 

0; ax = 1. 
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