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In [7], Silvester shows that a number of the properties of the Fibonacci se-
quence can be derived from a matrix representation. In so doing, he shows that if

0 1
A = [1 1} then

» ol =)

where u, represents the kth Fibonacci number. This is a special case of a more
general phenomenon. Suppose the (n+k)th term of a sequence is defined recursive-
ly as a linear combination of the preceding k terms:

(2) Gnyr = Codp + C1Qupp + 20t + Cp1Quip

(¢gs ++.» ©y-1 are constants). Given values for the first k terms, ag, Qys «..,
a;_1> (2) uniquely determines a sequence {a,}. In this context, the Fibonacci se-
quence {u,} may be viewed as the solution to

Apyg = An + Qpyy

which has initial terms u, = 0 and u; = 1.

Difference equations of the form (2) are expressible in a matrix form analo-
gous to (1). This formulation is unfortunately absent in some general works on
difference equations (e.g. [2], [4]), although it has been used extensively by
Bernstein (e.g. [1]) and Shannon (e.g. [6]). Define the matrix 4 by

K 1 0...0 o ]
0 0 1...0 0
Lo o 0 0 ...0 0
0 0 0...0 1
| ©o ¢ =) Cr-2 Ck-1

Then, by an inductive argument, we reach the generalization of (1):

ay aAyn
" a, An+1
(3 A" =
Ap-1 An+k-1

Just as Silvester derived many interesting properties of the Fibonacci numbers
from a matrix representation, it also is possible to learn a good deal about {a,}
from (3). We will confine ourselves to deriving a general formula for a, as a
function of n valid for a large class of equations (2). The reader is invited to
generalize our results and explore further consequences of (3).

Following Shannon [5], we define a generalized Fibonacci sequence as a solution
to (2) with the initial terms [ay, ..., az_,] = [0, 0, ..., 0, 1]. ©Equation (3)

then becomes
an 0

An+k 1
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More specifically, a formula for a, is given by

[oNe]

(4) a, =[1 0 0 ... 014"

When A can be brought to diagonal form, (4) is easily evaluated to provide the de-
sired formula for a,.

As many readers have doubtless recognized, A is the companion matrix for the
polynomial

) p(E) = % = o E5T - e yt5 < e < o

In consequence, p(t) is both the characteristic and minimal polynomial for A, and
A can be diagonalized precisely when p has k distinct roots. In this case we have

(6) p(t) = (£t - r))(E - r,) ... (£t - rp)

and the numbers r,, r,, ..., r; are the eigenvalues of 4.
To determine an eigenvector for 4 corresponding to the eigenvalue r; we con-
sider the system

N (4 - r;,I)X = 0.

As there are k eigenvalues, each must have geometric multiplicity one, and so the
rank of (4 - r;I) is k - 1. The general solution to (7) is readily preceived as

r;
r}

k-1
i

where x; may be any scalar. For convenience, we take x; = 1.
Following the conventional procedure for diagonalizing A, we invoke the fac-
torization
A =SDS™,

where S is a matrix with eigenvectors of 4 for columns and D is a diagonal matrix.
Interestingly, the previous discussion shows that for a polynomial p with distinct
Troots I'ys Pp, ..., I, the companion matrix A can be diagonalized by choosing S to
be the Vandermonde array

[ 1 1 1 .o 1

ry r, r, . Z%

2 2 2 2

r r r ces I

V(rys Pps voey 1) =| 71 2 8 k
k-1 k-1 k-1 k-1
LP PZ P3 cee Ty 7

Related results have been previously discussed in Jarden [3].
To make use of the diagonal form, we substitute for 4 in (4) and derive the
following:
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a, =[1 0 0 ...0JV(ry, 7,5 «uus 2DV (2, 7y vuuy 1)
‘ 1
Noting that the product of the first three matrices at right is [»} rJ ... r1,
we represent the product of the remaining matrices by

Y1
Y,
Y
and a much simpler formula for a, results:
X
(8) a, =9, ry,.
=1
Now, to determine the values Yoo wees Yp» We solve
Y1 0
Y, 0
V(ry, Pps oves 700 = .
Yy 1

By Cramer's rule, y, is given by the ratio of two determinants. In the numerator,
after expanding by minors in column m, the result is

m+k
(1) " Tdet V(ry, «ves Ppys Pppys cees )5

while the denominator is det V(rl, ey rk). Thus, the ratio simplifies to

y _ (_1)m+k
BERNCPLaL | NEREE

The final form of the formula is derived by utilizing the notation of (6) and rec-
ognizing the last product above as p’(r,). Substitution in (8), and elimination
of the factors of (-1) complete the computations and produce a simple formula for
fe o
7

(€)) a, = —r
Py
We conclude with a few examples and comments that pertain to the case k = 2.
Taking ¢, = ¢; =1, the sequence {a,} is the Fibonacci sequence. Here
l— 1__
P(t)=t2~t_l=<t—l'r2‘/5><— 2/3>

and p'(¢t) = 2¢t - 1. By using (9), we derive the familiar formula:
(]_ + /5—>n <]_ ~ v/§>n

2 - + 2 )

/5 /5

Consider next the case ¢, = ¢; = 1/2, in which each term in the sequence is the
average of the two preceding terms. Now,

Ay =
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p(t) =t st =5 = (t 1)(t + 2).

2 = %[2 + (_.;.)"'1].

More generally for k = 2, the discriminant of p(¢) will be D = ei + 4c, and (9)
produces the formula

This time, (9) leads to

(e, +VD)" = (e, - /D)"

ay, —
2"/D
If D is negative, we may express the complex number c, + VD in polar form as
R(cos 6 + 7 sin 0).
Then the formula for a, simplifies to
2. = (ﬁ)”‘lsin 70
i 2 sin 6

Thus, for example, with ¢; = ¢, = ~1, we obtain

n-1 2 nm
a, = (-1) 1 ‘7—3— sin(—3—>.

This sequence {a,} is periodic, repeating 0, 1, -1, as may be verified inductively
from the original difference equation

Aoy = ~An ~ a =0; a, =1,

n+13 g 1
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