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PROBLEMS PROPOSED IN THIS ISSUE 

H-368 Proposed by Andreas N. Philippou, University of Patras, Patras, Greece 

For any fixed integer k ^ 2, 

T / « ! + • • < + " * + 1\ = A f(*) f ( f c ) > 
nl3 ...,nkB \ ni> ' " ' » "It* l J £=0 

n1+2n2 + --- + knk = n 

where /„ are the Fibonacci numbers of order k [1], [2]. 
In particular, for k - 2, 

C^2] (n - A A 
£ (n + 1 - £)P " ) = J] ̂  + 1Fn + 1_£, n > 0. 

The problem also includes as a special case (k = 1) the following: 

(n + 3? - 1\ " v* /n - £ + p - 2\ . • " ,_,. 

\ .r.- 1 )=h\ "2 ) ' n > ° - (B) 
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H-369 Proposed by Charles R. Wall, Trident Technical College, Charleston, SC 

Call an integer-valued arithmetic function / a god sequence if 

gcd(a, b) = d implies gcd(/(a), f(b)) = f(d) 

for all positive integers a and b. A gcd sequence is primitive if it is neither 
an integer multiple nor a positive integer power of some other gcd sequence. 
Examples of primitive gcd sequences include: 

(1) f(n) = 1 (2) f(n) = n (3) f(n) = largest squarefree divisor of n 
(4) f(n) = 2n - 1 (5) f(n) = Fn (Fibonacci sequence) 

(A) 

(A.l) 
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Prove that there are infinitely many primitive gcd sequences. 

H-370 Proposed by M. Wachtel & H. Schmutz, Zurich, Switzerland 

For every positive integer a show that 

5 • [5 • (a2 + a) + 1] + 1 (A) 

5 • [5 • [5 • [5(a2 + a) + 1] + 1] + 1] + 1 (B) 

are products of two consecutive integers, and that no integral divisor of 

5(a2 + a) + 1 

is congruent to 3 or 7, modulo 10. 

H-371 Proposed by Paul S. Bruckman, Carmichael, CA 

Let [k] represent the purely periodic continued fraction: 

k + l/(k + l/(k + ..., k = 1, 2, 3, ... . 
Show that 

[k]3 = [k3 + 3k]- (1) 

Generalize to other powers. 

SOLUTIONS 

Give Poly Sum! 

H-3^8 Proposed by Andreas N. Philippou, Patras, Greece 
(Vol. 20, no. 4, November 1982) 

For each fixed integer k > 2, define the sequence of polynomials a(„fe)(p) by 

a(W(p) . pn+k E <n + ;•; +»k)(l^E)V-+-*. (B > o, - < P < - ) . 
«i» ••• »nfc \ n l s 3 n^ / \ p 1 

where the summation is over all nonnegative integers n19 ..., n^ such that 

nY + 2n2 + ••• + fcnfe = n. 
Show that 

Z 4k)(p) = 1 (0 < p < 1). 
rc = 0 

Solution by the proposer. 

Using the definition of a^Cp) and the transformation ni = m^ (1 < i < k) 
and fc 

^ = w + S (̂  " l)mi> 
i = l 

we get 

E a-cp) = P^L z ft+ - +
m > — • • • • * - ( i ^ ) m — 

m x + • • • + /7?k= m 

= Pk S((——^-)(p + p2 + ••• + Pk)j 5 by the multinomial theorem, 

1984] 189 



ADVANCED PROBLEMS AND SOLUTIONS 

= Pk E C 1 " Pk)m = 1, for |l - p*| < 1, (1) 
m =0 

which establishes the result. Moreover, (1) implies that for any fixed integer 
I > 1, 

X>(
n
2£)(p) = 1, for -1 < p < 1. (2) 

n = 0 

Remark: If p = 1/2, the problem reduces to showing that 

E(/f)/2n) = 2*"1, (3) 
tt=l 

where /n is the Fibonacci sequence of order k, since it may be seen, [l]-[2], 
that 

f«\- E . (ni
n

+'"+nnk) (»>0). 
n1+2n2 + - • - + knk = n 

A direct proof of (3) is given in [3]. 
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Also solved by Paul S. Bruckman and L. Kuipers. 

Triggy 

H-3̂ +9 Proposed by Paul S. Bruckman, Carmichael, CA 
(Vol. 21, no. 1, February 1983) 

n~1 n2 - 1 
Define Sn as follows: Sn - £ esc TTkin, n = 2, 3, ... . Prove Sn - — ~ — . 

k = i 5 

Solution by Omer Egecioglu, University of California, La Jolla, CA 

We will prove a slight generalization: Let 5 be a primitive n th root of 1. 
Then , . r 1 

n-1 ( n if n\m 
E tkm = \ 

k=0 (0 otherwise. 
For ItI < 1, we have 

E — h - = E E ? *m = I t " E ^ = —2—. 
k = 0 1 - £ £ /c = 0 w = 0 /?7 = 0 ^ = 0 l _ ^ n 

Thus 
V 1 1 1 - « 1 n - I > _ = i i m _ — - — - — 
«-i 1 - 5fc **i 1 - t" : - * 2 
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Using the fact that |l - E,k\2 = (1 - ̂ k)(l - ^k) and partial fractions, similar 
techniques yield the following, more general formula: For 0 < m < n, we have 

n - 1 rkm Vm _ i 
k = l [ 1 

Now, writing 

£ "2—— = "^(n2 + 6777(777 - n) - 1). (1) 
fc=i 1 - £k 2 z 

t, - cos 1- ̂  sin , 
n n 

we obtain 

|l - KK\2 = (1 - ?fc)(l - I") = 2(1 - Re £*) = 4 sinz -^ 

Separating E, m into its real and imaginary parts, (1) implies 

V-1 2-Khn 2 T\k 1 , 2 . , , x -, s / I N 
£ cos — — csc — = -r-(n + 6w(m - n) - 1) (la) 

k=i n n J 

V s m csc — = 0 (lb) 
L~t 71 71 

k=l L l 

whenever 0 < 77? ̂  n. 2 _ 1 
From (la), we obtain the special case Sn = — by taking 777 = n. For n 

even, with m = n/2, (la) yields 

EVD'CSC2?- -W + 2). 
k = l n b 

The following identities can also be obtained by arguments similar to the 
derivation of (1): 

n -1 rkm _ . •, 

L —-—r = m 9 — ' ( 2 ) 

fc = l I - E,k Z 

n - 1 rkm -i 
V 2 = -To(w + 6n - 6777n 4- 6TT?2 - 12m + 5 ) ; (3) 
* - i (1 - S k ) 2 1 2 

V 1 = 1 - JL c o t ™ (4) 
t i \ i - e \ 2 - i ^ 6 

These yield further trigonometric identities by separating £ to its real and 
imaginary components. For instance, from (4), we obtain 

n- 1 1 71 7ll\ E 1 1 ru _ ]_ c o t 

k= 1 4 s m 1 v3 

and for n even, (3) with 777 = n/2 gives 

/ . (~1) cos cot — = 0 . 
fcTi n n 

Also solved by P. Bruckman, W. Janous, S. Klein, D. P. Laurie, B. Prielipp, 
T. J. Rivlin, and J. Suck. 
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We Have the System 

H-351 Proposed by Verner E. Hoggatt, Jr. (deceased) 
(Vol. 21, No. 1, February 1983) 

Solve the following system of equations: 
Ui = l 

V1 = 1 

U2 = U1 + V1 + F2 = 3 

V2 = U2 + Vl = 4 

Un + i = Un +Vn + Fn + 1 (n > 1) 

Vn+l = Un+l + Vn fa > 1) 

Solution by C. Georghiou, University of Patras, Patras, Greece 

The generating functions of the sequences 

are, respectively, 

(1 - x - X2)'1, x(l - 3x + a;2)-1, and (1 - x)(I - 3x + x2)'1. 

Let u(x) and V(x) represent the generating functions of the sequences {Un}n=0 
and {Vn}n = Qi respectively. From the given system we get (since U0 = VQ = 0 ) : 

— u(x) = u(x) + v(x) + (1 - x - x2)'1 and — v(x) =—u(x) + v(x). 

Then i o i o . 
v(x) = a?/(l - x - x )(1 - 3x + ar) = — — 2 1 - 3ar - x2 2 1 - x - x2 

1 - x 
+ — 1 - 3x + ̂ c2 2 1 - 3x + xc2 1 - x - x2 2 1 - x - #2" 

Therefore . , 
n L Zn+1 T 2 2 n n + 1 2 w 

and 
^n vn vn-l 2 2.n+2 2 n + 1 

Also solved by P. Bruckman, W. Janous, L. Kuipers, J. Suck, M. Wachtel, and the 
proposer. 
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