SOME OPERATIONAL FORMULAS FOR THE q-LAGUERRE POLYNOMIALS

NADHLA A. AL-SALAM
University of Alberta, Edmonton, Alberta, Canada (T6C, 2C1)
(Submitted August 1982)

1. INTRODUCTION
L. B. Rédei [7] proved an operational identity for the Laguerre polynomials that was later generalized by Viskov [9]. Viskov's main results were as follows: if $D=d / d x$, then for $n=0,1,2, \ldots$, we have

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)=\frac{(-1)^{n}}{n!} e^{x}\{(\alpha+1+x D) D\}^{n} e^{-x}=\frac{(-1)^{n}}{n!} e^{x} B^{n} e^{-x} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)=\frac{1}{n!}\{(1+\alpha-x+x D)(1-D)\}^{n} \cdot 1 \tag{1.2}
\end{equation*}
$$

where $L^{(\alpha)}(x)$ is the $n^{\text {th }}$ Laguerre polynomial.
A third formula of a similar nature was given earlier by Carlitz [2]:

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)=\frac{1}{n!} \prod_{k=1}^{n}(x D-x+\alpha+k) \cdot 1 \tag{1.3}
\end{equation*}
$$

Recently, there has been renewed interest in q-identities and operators as well as in the q-Laguerre polynomial (see, e.g., [3], [5], [6]). Therefore, we felt it would also be interesting to discuss q-generalizations of the identities (1.1)-(1.3). In the following, we shall assume always that $|q|<1$.

We first introduce the following notation:
$[\alpha]_{0}=(\alpha ; q)_{0}=1$;
$[\alpha]_{n}=(\alpha ; q)_{n}=(1-\alpha)(1-\alpha q) \ldots\left(1-\alpha q^{n-1}\right) \quad(n=1,2,3, \ldots)$.
Also, we shall use $[\alpha]_{\infty}=(\alpha ; q)_{\infty}$ to mean the convergent product

$$
\prod_{k=0}^{\infty}\left(1-a q^{k}\right)
$$

It is well known that $[\alpha]_{\infty}$ is a q-analog of the exponential function. Thus, we have

$$
\lim _{q \rightarrow 1^{-}}(-(1-q) x ; q)_{\infty}^{-1}=e^{-x}
$$

For this reason, the more suggestive notation

$$
(x ; q)_{\infty}^{-1}=e_{q}(x)
$$

is used for a q-analog of the exponential function.
The q-derivatives of a function $f(x)$ is given by

$$
D_{q} f(x)=\frac{f(x)-f(x q)}{x},
$$

so whenever f has a derivative at x, we have

$$
\lim _{q \rightarrow 1} \frac{1}{(1-q)} D_{q} f(x)=f^{\prime}(x) .
$$

We shall also use the substitution operator $\eta: \eta f(x)=f(q x)$. It is related to the q-derivative by means of $x D_{q}=I-\eta$, where I is the identity operator. Note that x and D_{q} do not commute.

We recall that the q-Laguerre polynomials [6] are defined by

$$
\begin{equation*}
L_{n}^{(\alpha)}(x \mid q)=\frac{\left[q^{\alpha+1}\right] n}{[q]_{n}} \sum_{k=0}^{n} \frac{\left[q^{-n}\right] q^{\frac{1}{2} k(k+1)+k(n+\alpha)}}{[q]_{k}\left[q^{\alpha+1}\right]_{k}} x^{k} \tag{1.4}
\end{equation*}
$$

so that

$$
\lim _{q \rightarrow 1} L_{n}^{(\alpha)}((1-q) x \mid q)=L_{n}^{(\alpha)}(x), \quad n=0,1,2, \ldots
$$

These polynomials, which are orthogonal and belong to an indetermined Stieltjes moment problem ([3] and [6]), were known to W. Hahn [5]. They have, among other properties, a Rodrigues formula:

$$
\begin{equation*}
L_{n}^{(\alpha)}(x \mid q)=\frac{x^{-\alpha}[-x]_{\infty}}{[q]_{n}} D_{q}^{n}\left\{\frac{x^{\alpha+n}}{[-x]_{\infty}}\right\} . \tag{1.5}
\end{equation*}
$$

Cigler [4] gave the representation

$$
\begin{equation*}
L_{n}^{(\alpha)}(x \mid q)=\frac{(-1)^{n}}{[q]_{n}}\left(\eta-D_{q}\right)^{n+\alpha} x^{n}=(-1)^{n} x^{-\alpha} \frac{1}{[q]_{n}}\left(\eta-D_{q}\right)^{n} x^{n+\alpha} \tag{1.6}
\end{equation*}
$$

Representations (1.5) and (1.6) are both of the same nature-the $n^{\text {th }}$ iterate of the operator (D_{q} or $\eta-D_{q}$, respectively) acts on a function that depends on n also. In some applications, this is a drawback. This is why (1.1) and (1.2) are interesting.

2. A q-ANALOG OF THE REDEI-VISKOV OPERATOR

Put

$$
\begin{equation*}
B_{q}=\left\{\left(1-q^{\alpha+1}\right) I+q^{\alpha+1} x D_{q}\right\} D_{q} . \tag{2.1}
\end{equation*}
$$

Thus, formally, we have

$$
\lim _{q \rightarrow 1} \frac{B_{q}}{(1-q)^{2}} f(x)=(\alpha+1+x D) D f(x)=B f(x),
$$

which is the operator that appears in the right-hand side of (1.1).
It is easy to see that

$$
\begin{equation*}
B_{q} x^{n}=\left(1-q^{n}\right)\left(1-q^{n+\alpha}\right) x^{n-1}, \tag{2.2}
\end{equation*}
$$

from which we can verify another representation for the B_{q} operator, namely,

$$
\begin{equation*}
B_{q}=\left(I-q^{\alpha+1} \eta\right) D_{q} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{q}=x^{-\alpha} D_{q} x^{\alpha+1} D_{q}=D_{q} x^{1-\alpha} D_{q} x^{\alpha} \tag{2.4}
\end{equation*}
$$

The latter representation shows that the operator B_{q} is also a q-analog of the Bessel operator (see [10]):

$$
B=x^{-\alpha} \frac{d}{d x} x^{\alpha+1} \frac{d}{d x}
$$

From the relation $D_{q}\left(1-q^{\alpha+1} \eta\right)=\left(1-q^{\alpha+2} \eta\right) D_{q}$, we get, by induction,

SOME OPERATIONAL FORMULAS FOR THE q-LAGUERRE POLYNOMIALS

$$
\begin{equation*}
B_{q}^{n}=\left\{\prod_{k=1}^{n}\left(1-q^{\alpha+k} n\right)\right\} D_{q}^{n} \quad(n=0,1,2, \ldots) \tag{2.5}
\end{equation*}
$$

It is easy to see that $D_{q}\left\{e_{q}(-x) f(x)\right\}=e_{q}(-x)\left(D_{q}-\eta\right) f(x)$. Thus, we have, for any formal power series $F(x)$,

$$
\begin{equation*}
F\left(D_{q}\right)\left\{e_{q}(-x) f(x)\right\}=e_{q}(-x) F\left(D_{q}-\eta\right) f(x) \tag{2.6}
\end{equation*}
$$

Using mathematical induction and noting that

$$
\left(D_{q}-\eta\right)\left(I-q^{\mu}(1+x) \eta\right)=\left(I-q^{\mu+1}(1+x) \eta\right)\left(D_{q}-\eta\right)
$$

we get

$$
\begin{aligned}
B_{q}^{n}\left\{e_{q}(-x) f(x)\right\} & =e_{q}(-x)\left\{\left(I-q^{\alpha+1}(1+x) \eta\right)\left(D_{q}-\eta\right)\right\}^{n} \cdot f(x) \\
& =e_{q}(-x)\left\{\prod_{k=1}^{n}\left(1-q^{\alpha+k}(1+x) \eta\right)\right\}\left(D_{q}-\eta\right)^{n} \cdot f(x) \\
& =\frac{1}{x^{n}} e_{q}(-x) \prod_{k=1}^{n}\left(1-q^{\alpha+k-n}(1+x) \eta\right)\left(1-q^{k-n}(1+x) \eta\right) \cdot f(x)
\end{aligned}
$$

Now, to obtain operational representations for the q-Laguerre polynomials, we first calculate

$$
\begin{aligned}
B_{q}^{n} e_{q}(-x) & =B_{q}^{n} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{[q]_{k}} x^{k} \\
& =\sum_{k=n}^{\infty} \frac{\left(1-q^{k}\right)\left(1-q^{k-1}\right) \ldots\left(1-q^{k-n+1}\right)\left(1-q^{k+\alpha}\right) \ldots\left(1-q^{k-n+\alpha+1}\right)(-x)^{k-n}}{[q]_{k}} \\
& =(-1)^{n}\left[q^{\alpha+1}\right]_{n} \sum_{k=0}^{\infty} \frac{\left[q^{\alpha+n+1}\right]_{k}}{[q]_{k}\left[q^{\alpha+1}\right]_{k}}(-x)^{k} .
\end{aligned}
$$

Andrews [1] gave a q-analog of Kummer's Theorem, i.e.,

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{[\beta]_{k}[\alpha]_{k}(-1)^{k} q^{\frac{1}{2} k(k-1)}}{[q]_{k}[\gamma]_{k}[x \alpha]_{k}}\left(\frac{x \gamma}{\beta}\right)^{k}=\frac{[x]_{\infty}}{[x \alpha]_{\infty}} \sum_{k=0}^{\infty} \frac{[\gamma / \beta]_{k}[\alpha]_{k}}{[q]_{k}[\gamma]_{k}} x^{k} \tag{2.8}
\end{equation*}
$$

Putting $\alpha=0$ in this formula, replacing x by $-x$, and then taking $\gamma=q^{\alpha+1}$, $\beta=q^{-n}$, we get that

$$
B_{q}^{n} e_{q}(-x)=\frac{(-1)^{n}\left[q^{\alpha+1}\right]_{n}}{[-x]_{\infty}} \sum_{k=0}^{n} \frac{\left[q^{-n}\right]_{k} q^{\frac{1}{2} k(k-1)+k(\alpha+n+1)}}{[q]_{k}} x^{k}=\frac{(-1)^{n}[q]_{n}}{[-x]_{\infty}} L_{n}^{(\alpha)}(x \mid q)
$$

Together with (2.7), this formula gives the following three representations:

$$
\begin{align*}
L_{n}^{(\alpha)}(x \mid q) & =\frac{(-1)^{n}}{[q]_{n}}\left\{e_{q}(-x)\right\}^{-1} B_{q}^{n}\left\{e_{q}(-x)\right\} \tag{2.9}\\
& =\frac{1}{[q]_{n}} \prod_{k=1}^{n}\left(I-q^{\alpha+k}(1+x) \eta\right) \cdot 1 \tag{2.10}\\
& =\frac{(-1)^{n}}{[q]_{n}}\left\{\left(I-q^{\alpha+1}(1+x) \eta\right)\left(D_{q}-\eta\right)\right\}^{n} \cdot 1 \tag{2.11}
\end{align*}
$$

SOME OPERATIONAL FORMULAS FOR THE q-LAGUERRE POLYNOMIALS

If we let $q \rightarrow 1$, then (2.9), after suitable normalization by (1 - q), reduces to (1.1); (2.11) reduces to (1.2); and (2.10) reduces to Carlitz's formula (1.3).

Using (2.2) and (1.4), we get, for $m=0,1,2, \ldots$,

$$
\begin{equation*}
B_{q}^{m} L_{n}^{(\alpha)}(x \mid q)=(-1)^{m} \frac{\left[q^{\alpha+1}\right]_{n}}{\left[q^{\alpha+1}\right]_{n-m}} q^{m(m+\alpha)} \Psi_{n-m}^{(\alpha)}\left(q^{2 m} x \mid q\right) \tag{2.12}
\end{equation*}
$$

Notice that the operation on $L_{n}^{(\alpha)}(x \mid q)$ by B_{q} reduces the degree by one without changing the value of the parameter α.

There is another q-analog of the exponential function e^{-x}, namely,

$$
E_{q}(x)=\sum_{k=0}^{\infty} \frac{(-1) q^{\frac{1}{2} k(k-1)}}{[q]_{k}} x^{k}=\prod_{j=0}^{\infty}\left(1-x q^{j}\right)
$$

If we repeat the above calculation, we can show that

$$
B_{q}^{n} E_{q}(x)=(-1)^{n}\left[q^{\alpha+1}\right]_{n} q^{\frac{1}{2} n(n-1)} \sum_{j=0}^{n} \frac{(-1)^{j} q^{\frac{1}{2} j(j-1)+n j}\left[q^{\alpha+n+1}\right]_{j}}{[q]_{j}\left[q^{\alpha+1}\right]_{j}} x^{j}
$$

Once again we can transform the right-hand side of this formula by using (2.8) (with $\alpha=0, \beta=q^{\alpha+n+1}, \gamma=q^{\alpha+1}$, and $x \rightarrow x q^{2 n}$), to obtain

$$
\begin{equation*}
B_{q}^{n}\left\{E_{q}(x)\right\}=(-1)^{n} q^{\frac{1}{2} n(n-1)+\alpha n}[q]_{n} E_{q}\left(x q^{2 n}\right) L_{n}^{(\alpha)}\left(-x q^{2 n-1} \mid q^{-1}\right) \tag{2.13}
\end{equation*}
$$

Comparison formulas to this are:

$$
\begin{equation*}
e_{q}\left(-\eta^{-2} B_{q}\right)\left\{x^{n}\right\}=(-1)^{n} q^{-n(n-1)}[q]_{n} L_{n}^{(\alpha)}\left(q^{\alpha+1} x \mid q\right) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{q}\left(-B_{q}\right)\left\{x^{n}\right\}=(-1)^{n}[q]_{n} q^{\frac{1}{2} n(n-1)} L_{n}^{(\alpha)}\left(x q^{2 n-1} \mid q^{-1}\right) \tag{2.15}
\end{equation*}
$$

Both formulas (2.14) and (2.15) reduce in the case $q \rightarrow 1$ to the new formula for the ordinary Laguerre polynomials:

$$
\begin{equation*}
e^{-B} x^{n}=(-1)^{n} n!L_{n}^{(\alpha)}(x) \quad(n=0,1,2, \ldots) \tag{2.16}
\end{equation*}
$$

On the other hand, formula (2.13) reduces to (1.1).
If we calculate the right-hand side of (2.9) directly, we get

$$
\begin{align*}
B_{q}^{n} e_{q}(-x) & =(-1)^{n} \prod_{k=1}^{n}\left(1-q^{\alpha+1} \eta\right) e_{q}(-x) \tag{2.17}\\
& =\sum_{j=0}^{n}(-1)^{n+j}\left[\begin{array}{l}
n \\
j
\end{array}\right] q^{\frac{1}{2} j(j-1)+(\alpha+1) j} \eta^{j} e_{q}(-x) \\
& =e_{q}(-x) \sum_{j=0}^{n}(-1)^{n+j}\left[\begin{array}{l}
n \\
j
\end{array}\right] q^{\frac{1}{2} j(j+1)+\alpha j}[-x]_{j} .
\end{align*}
$$

The second equality is due to the Euler identity

$$
\prod_{k=1}^{n}\left(1-q^{k-1} x\right)=\sum_{j=0}^{n}(-1)^{j}\left[\begin{array}{l}
n \\
j
\end{array}\right] q^{\frac{1}{2} j(j-1)} x^{j},
$$

where $\left[\begin{array}{l}n \\ j\end{array}\right]$ stands for the q-binomial coefficient, i.e., for 1 if $j=0$ and for

$$
(1-q)\left(1-q^{n-1}\right) \ldots\left(1-q^{n-j+1}\right) /(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{j}\right)
$$

if $j \geqslant 1$. Combining (2.9) and (2.17), we obtain another expansion for the q Laguerre polynomial:

$$
L_{n}^{(\alpha)}(x \mid q)=\frac{1}{[q]_{n}} \sum_{j=0}^{n}(-1)^{j}\left[\begin{array}{l}
n \tag{2.18}\\
j
\end{array}\right][-x]_{j} q^{\frac{1}{2} j(j+1)+\alpha j} .
$$

REFERENCES

1. G. Andrews. "On the q-Analog of Kummer's Theorem and Applications." Duke Math. J. 40 (1972):525-28.
2. L. Carlitz. "A Note on the Laguerre Polynomials." Michigan Math. J. 7 (1960):219-23.
3. T. S. Chiharra. "Orthogonal Polynomials with Brenke Type Generating Functions." Duke Math. J. 35 (1968):505-18.
4. J. Cigler. "Operator methoden für q-Identitäten II: q-Laguerre Polynome." Monatsh. Math. 91 (1981):105-17.
5. W. Hahn. "Über orthogonalpolynome, die q-differenzen-gleichungen genügen." Math. Nath. 2 (1949):4-34.
6. D. Moak. "The q-Analogue of the Laguerre Polynomials." J. Math. Anal. Appl. 81 (1981):20-47.
7. L. B. Rédei. "An Identity for the Laguerre Polynomials." Acta Sci. Math. 37 (1975):115-16.
8. G. Szëgo: Orthagonal Polynomials. New York: American Mathematical Society, Rev. ed., 1959.
9. O. V. Viskov. "L. B. Redei Identity for the Laguerre Polynomials." Acta Sci. Math. 39 (1977):27-28. (Translated from the Russian.)
10. N. Meller. "On an Operational Calculus for the Operator B_{α}." Vych. Math. Izd-vo Akad. Nauk SSSR 非6 (1960):161-68. (Translated from the Russian.)
$\diamond \diamond \diamond \diamond$
