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1. INTRODUCTION AND SUMMARY 

In what follows, we use the Fibonacci sequences of order k9 as for example 
in Philippou and Muwafi [2] (although modified somewhat here), and the Pascal-
T triangles, as in Turner [6], to solve a number of enumeration problems involv-
ing the number of binary numbers of length n which have (or do not have) a 
string of k consecutive ones, subject to various auxilliary conditions (no k 
consecutive ones, exactly ks at least k, and so on). Collectively, these kinds 
of problems might be labelled fc-in-a-row problems, and they have a number of 
interpretations and applications (a few of which are discussed in §4): combina-
torics (menage problems), statistics (runs problems), probability (reliability 
theory), number theory (compositions with specified largest part). Generating 
functions, inclusion-exclusion arguments, and the like, are perhaps most com-
monly used in these problems, but the methods developed here are simple, sur-
prisingly effective, and computationally efficient. Finally, we note that al-
though the string length n is fixed here, some of our results will also apply 
to parts of [2], [5], [6] (cf.,, e.g., the Corollary to Theorem 3.1), which dis-
cuss the problem of waiting for the kth consecutive success, since the situa-
tion there is in some respects essentially that of having a fixed string length 
of size n + k. 

Definitions and constructions are in §2, the enumeration theorems are in 
§3, and §4 gives several examples of their use. 

2. MODIFIED ^-SEQUENCES, AND TRIANGLES T 

We need a slightly altered version of the usual definition of a Fibonacci 
sequence of order k9 one that omits the leading 0, 1. 

Definition 2.1: The sequence {/&(n)}£=0, k > 0, is said to be the modified 
Fibonacci sequence of order k if fQ(n) = 0, f1(n) = 1, and for k ^ 2, 

( 2n
t 0 < n < k - 1 

It will prove convenient to have a notation for the corresponding Pascal-^7 

triangles of order k. 

Definition 2.2: For any k ^ 0, T^ is the array whose rows are indexed by N = 
0, 1, 2, ..., and columns by K = 0, 1, 2, ..., and whose entries are obtained 
as follows: 

a) ̂ o is the all-zero array; 
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b) T1 is the array all of whose rows consist of a one followed by zeros; 

c) Tk, k > 2, is the array whose N= 0 row is a one followed by zeros, whose 
N= 1 row is fc ones followed by zeros, and any of whose entries in subse-
quent rows is the sum of the k entries just above and to the left in the 
preceding row (with zeros making up any shortage near the left-hand 
edge). 

Definition 2,3: In Tk , denote the entry at the intersection of row N and col-
umn Z by Ck(N, Z). 

T2 is of course the Pascal triangle, and we will denote its entries by ($). 
We note that the Tk can be tabulated for moderate values of N, K and can be 
considered as available as a binomial table. For k > 0, by construction there 
are (N(k - 1)+ 1) nonzero entries in each row, the symmetry relation among the 
Ck is 

Ck(N9 Z) = Ck(N, N(k - 1) - Z), 0 < K < N(k - 1), (2.2) 

and the relation among the Ck in adjacent rows is 

k-i 
Ck(N, K) = E Ck(N - 1, K - j)i (2.3) 

j = o 

here N9 Z, and k are nonnegative, an empty sum is taken to be zero, and any Ck 
with either argument negative is zero. That is, (2.3) just expresses property 
(c) of the definition of Tk* Also by construction, the relation between the fk 
and the Cv is 

K n 
fk(n) = E Ck(n - J + 1. J)> (2-4) 

J-0 

so that the fk(n) are also given by the successive southwest-northeast diag-
onals of Tk [starting with the (1,0) entry]. This follows from the recurrence 
in the definition of fk(n) and that fact that, by (2.3), each element in the 
diagonal making up fk(n) is a sum of k preceding elements. 

Definition 2. 4: Denote by $pk the number of binary numbers of length n which 
have a total of p ones and a longest string of exactly k consecutive ones. For 
any k ^ 2, define the 5^-array to be 

$k+i, k $k + i, k + i 

Pn,k Pn.fe + l ' pnn 

in which the row elements are associated with a fixed total number of ones, and 
the column elements with a fixed number of consecutive ones. 

3. ENUMERATION THEOREMS 

Theorem 3.1: The number of binary numbers of length n which have no k consecu-
tive ones is given by fk (n), n > 0. 
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Proof: Let gin) enumerate the numbers having the property stated. Then we 
have, schematically. 

I n 1 = [ n - 1 1 o] + 1 n - 2 | ofl + ••• + | n - k \ 011...1 1 , 
* , ' « „ * y „ « , » 

gin) gin- I) gin- 2) gin-k) 

with g{n) satisfying the same initial conditions as in (2.1), and so g(n) is 
just fk(n). 

Corollary 3.1: The number of binary numbers of length n which end with k con-
secutive ones but have no other string of k consecutive ones is given by 

fkin - k - 1), n > k, 
and with fki~l) = 1. 

Proof: We know that fk in - 1) enumerates the binary strings of length 
in - 1) with no k consecutive ones. These, however, form (with one zero at the 
end) the "first half" of the strings of length n. Thus, passing from fk(n) to 
fkin - 1) amounts to stripping the last one from the strings in the "last half" 
of the strings of length n. Continuing the argument in this way, we come to 
fkin - k - I), which enumerates the strings of length n - k that end with a 
zero. But, when a string of k consecutive ones is appended, these are precisely 
the configurations we wish to count. 

Remark 3.1: These two results can also be obtained from the work of Philippou 
and Muwafi [2], For k > 2, our fk in) is their sequence f£+\, n > 0. Then, 
Theorem 3.1 follows from the results in [2], since their a^p is 

4 W = <#+i(/> = 4 + i = fn+\ -fkW,n> 0, 

and Corollary 3.1 is equivalent to their Lemma 2.2. 

Theorem 3.2; The number of binary numbers of length n which have a longest 
string of exactly k consecutive ones is given by f^+1in) - fkin)9 n ^ 1. 

Proof: By Theorem 3.1, (2n - fkin)) is the number of configurations with 
k or more consecutive ones; (2n - fk+1W) is the number with (k + 1) or more 
consecutive ones. Their difference is the number with exactly k. 

Corollary 3.2: The column sums of the Bk -array are given by the numbers 

fk+1(n) - fk(n). 

Theorem 3. 3: The number of binary numbers of length n that have a total of J 
ones, no k consecutive is given by Ck in - j + 1, j). 

Proof: Let gkin9 j) enumerate these numbers. For 0 < J < k - 1, we have, 
by definition, and because we are in Tk, 

gkin, j) = Q ) = Ckin - 3 + 1, j), 

and for n > k9 gkin9 n) = 6^(1, n) = 0. Now let k < j < n. The numbers we want 
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that end in 0 are enumerated by 

gk(n - 1, J); 

those that end in 01 are enumerated by 

gk(n - 2 , j - 1); 

those that end in Oil are enumerated by 

gk (n - 3, j - 2), ...; and so on. 

Then we have the recurrence 

gk(n> j) = gk(n - I, j) + gk(n - 2, j - I) + -- + gk(n - k, j - k + I). (*) 

The conclusion can be proved by induction: the hypothesis asserts that 

9k(n - 1, j) = Ck(n - j, j), gk(n - 2, j - 1) = Ck(n - j, j - 1), ...5 

gk(n - k, j - k + 1) = Ck(n - j, j - k + 1). 

But this implies 

^(n, J) = Ck{n - j , j) + Ck(n - j, j - 1) +••• + Cfc(n - j, j - k + 1), by (*) 

= Ck(n - j + 1, j), by (2.3). 

CoroHary 3. 3; The number of binary numbers of length n that have a total of j 
ones and a string of ones of length at least k is given by 

(3) - Ck(n - j + 1, J). 

Corollary 3. 4: The row sums of the 5^-array are given by the formula of Corol-
lary 3.3. 

Theorem 3.4: The columns of the £fe-array (the elements $pk that give the num-
ber of binary numbers of length n with a total of p ones and a longest string 
of exactly k consecutive ones) are given by: 

6 i + i, j = C3+i(n ~ 3> 3 + 1) - CjO* - J ' 3 + 1) 
Bi + 2 j i = Cj+1(n - (j + 1 ) , j + 2) - Cj-Cn - ( j + 1 ) , j ) 2 < fc < j < n 

Bn-x.,. = Ci + 1 ( 2 , n - 1) - <7,(2, « - 1) 

3 „ , j = Cj + i d . «) " C j d . " ) 

Proof: Having the row sums of Bk for any k by Corollary 3.4, we can obtain 
B\ column by column. 

For completeness, we mention that although Bk was initially defined for 
k ^ 2, B0 and Bx can also be formed. The k = 0 column is a one followed by 

j, 1 < p < n. The 
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corresponding column sums are f1(n) - fQ(n) ~ 1 a nd f2^n) ~ fiW > an(^ t n e r o w 

sums in this case are just the I j. 

k. APPLICATIONS 

In this section we give three brief examples that are quite straightforward 
but nevertheless give some idea of the variety of possible interpretations and 
uses of the previous material. 

Example 4.1: Given n objects arranged in a row, the number of ways of choosing 
Q objects from among the n such that among the j chosen no k are consecutive 

( n - 7 + 1 \ 
), a re-

d ' 
suit which is one of the principal steps in the solution of the menage problem 
[4, p. 33]. 

Example 4.2: Engineers often increase the reliability of a system by making 
the conditions under which it fails more stringent. An example from reliabil-
ity theory is what is called a "consecutive-fc-out-of-n:.F system" [1]. This is 
a system of n independent, linearly ordered components, each of which operates 
(fails) with probability p(q)» such that the system fails when and only when k 
consecutive components fail. What needs to be calculated is the system failure 
probability, Pf(n, k). If we let a one stand for a failure, then by Corollary 
3.3, if we put 

( - ) Ck(n - j + 1, j) 

(j total lTs and at least k consecutive lfs), the failure probability is given 
by 

Pf(n, k) 
3 = k 

Example 4,3: In number theory, an ordered partition of n is called a composi-
tion of n. Let a(n, k) denote the number of compositions of n in which the 
largest part equals k. There is a natural one-to-one correspondence between 
the compositions a(n, k) and the number of binary numbers of length n beginning 
with a zero, and containing the pattern 1...1 with k - 1 ones but not the pat-
tern 1...1 with k ones; that is, any integer m in the composition is represented 
by the pattern 01...1 with m - 1 ones. But if the string of length n must be-
gin with a zero, we are just considering the "first half" of all the strings of 
length n. This is equivalent to considering strings of length n - 1 that have 
a largest consecutive-ones substring of length k - 1, and so Theorem 3.2 solves 
the problem of enumerating the a(n,k); i.e., a(n, k) = fk(n - 1) - fk_1(n - 1), 
n > 1, I < k < n. A short table follows: 

a(n, k): > ^ 
1 
2 
3 
4 
5 
6 

1 

1 

2 

1 
1 

3 

1 
2 
1 

4 

1 
4 
2 
1 

5 

1 
7 
5 
2 
1 

6 

1 
12 
11 
5 
2 
1 
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(For a generating function approach to this enumeration, see John Riordan [3, 
Ch. 6].) 

It seems fair to say that the generalized Fibonacci-sequence/Pascal-trian-
gle approach, as well as being interesting in its own right, is quite useful 
and a reasonable alternative to the generating function or multinomial methods 
often used in these kinds of problems. 
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