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1. INTRODUCTION 

Stirling numbers of the first and second kind are less known among statis-
ticians than among people who deal with combinatorics or finite differences. 
Only recently have they made their appearance in distribution theory and sta-
tistics. They emerge in the distribution of a sum of zero-truncated classical 
discrete distributions: those of the second kind, S(m, ri), in the case of a 
Poisson distribution truncated away from zero, Tate & Goen[13], Cacoullos [2], 
the signless (absolute-value) Stirling numbers of the first kind, \s(m, ri)\, in 
the logarithmic series distribution, Patil [9]. In general, such distributional 
problems are essential in the construction of minimum variance unbiased esti-
mators (mvue) for parametric functions of a left-truncated power series distri-
bution (PSD). 

Analogous considerations for binomial and negative binomial distributions 
truncated away from zero motivated the introduction of a new kind of numbers, 
called C-numbers by Cacoullos& Charalambides [5]. These three-parameter (7-num-
bers, C(m, ns k), were further studied by Charalambides [8], who gave the rep-
resentation 

m 

C(ms ns k) = J2 krs(m, r)S(r, n) 
v = n 

in terms of Stirling numbers of the first kind, s(m, r), and the second kind, 
S(r, n) . Interestingly enough, this representation in a disguised form was, in 
effect, used by Shumway & Gurland [11] to tabulate C-numbers, involved in the 
calculation of Poisson-binomial probabilities. 

The so-called generalized Stirling and C-numbers emerged as a natural ex-
tension of the corresponding simple ones in the study of the mvue problem for 
a PSD truncated on the left at an arbitrary (known or unknown) point (Charalam-
bides [7]). It should be mentioned that, in particular, the generalized Stir-
ling numbers of the second kind were independently rediscovered and tabulated 
by Sobel et at. [12], in connection with the Incomplete Type I-Dirichelt inte-
gral. 

The multiparameter Stirling and C-numbers are the analogues of generalized 
Stirling and C-numbers in a multi-sample situation where the underlying PSD is 
multiply truncated on the left (Cacoullos [3], [4]). 

Recurrence relations for ratios of Stirling and C-numbers are necessary, 
because the mvue of certain parametric functions of left-truncated logarithmic 
series, Poisson, binomial and negative binomial distributions are expressed in 
terms of such ratios. These recurrences bypass the computational difficulties 
which come from the fact that the numbers themselves (but not the ratios of 
interest) grow very fast with increasing arguments. Recurrences for ratios of 
simple Stirling numbers of the second kind were developed by Berg [1], 

The main purpose of this paper is to provide recurrences for certain ratios 
of multiparameter Stirling and C-numbers, thus unifying several special results, 
including those of Berg [1]. For the development of the topic, we found the 

1984] 119 



MULTIPARAMETER STIRLING AND C-NUMBERS: RECURRENCES AND APPLICATIONS 

use of exponential generating functions (egf) most appropriate both for intro-
ducing the numbers themselves and for deriving recurrences. Without claiming 
completeness, we included certain basic recurrences. As observed elsewhere, 
Cacoullos [3] and [4], it is emphasized here, once more, that in the study of 
PSDs the egf approach is the one suggested by the probability function itself 
in its truncated form. Also, we found it appropriate to include certain asymp-
totic relations between Stirling and C-numbers, which reflect corresponding 
relations between binomial and Poisson distributions or logarithmic series and 
negative binomial distributions. 

A typical result, which involves ratios considered here, is the following: 
Let x±j , j = 1, . .., rii, be a random sample from a left-truncated one-parameter 
PSD distribution with p.f. 

p(x; 6) = ~ (Q^ r y x = vt , vt + 1, ..., (1.1) 

where 

/€(8 . - *•*) = E <3i(x)ex, i = l , . . . , k. 
x - ri 

If the truncation point r = (r 9 . . ., rk) is known and a^{x) > 0 for every 
x > ri , i = 1, — , k9 then, according to Cacoullos [4], for every j = 1, 2, 
..., 6j is estimable and its (unique) mvue, based on all k independent samples 
{%ij }> is given by 

aim - j; n, v) 
W = (»>, a(m. g> ,} . d.2) 

where n = (nx, ..., nk), r = (PX , ..., rk), (m)j = m(m - 1) .. - (m - j + 1) and 

a(m; ns r) = , m' £ n n M * t f ) . (1.3) 
A ^ . ... /^. m i = 1 j = i 

where the summation extends over all ordered 217-tuples (N = n1 + — + n&) of 
integers a:̂- satisfying a;̂ - > vt , 

In the cases of interest (Poisson, binomial, and so on), the numbers (integers) 
a(tf7; n, r) turn out to be Stirling or C-numbers, depending on the series func-
tion ft in (1.1), which at the same time suggests the corresponding egf of these 
numbers. 

2. MULTIPARAMETER STIRLING NUMBERS OF THE FIRST KIND: 

DEFINITION-GENERAL PROPERTIES 

Let r13 . .., vk and nl9 ..., nk be nonnegative integers (k > 1). The multi-
parameter Stirling numbers of the first kind with parameters r = (rlf r2, ..., 
rk) and n = (n15 n2, ..., nk)9 to be denoted by s(m; n, r), can be defined (cf. 
Cacoullos [3]) by the egf, 
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(2.1) 
* 1 

?.=i nt • 
iog( i + t) - I T 1 ( - i ) i - 1 ^ 

j = i <? 

where we set m = r'n = Y-JI^ + ••• -V Vyn,. 
The special case k = I9 r± = r$ n1 = n yields the generalized Stirling num-

bers of the first kind, s(m; n, r)s defined by Charalambides [6], while k - 1, 
r = 1 gives the simple Stirling numbers of the first kind, s(m9 n). Proposi-
tions 2.1-2.3 summarize basic properties and recurrences for s(rn; n9 r) and 
facilitate their computation. 

Remark 2.1: In the sequel, in order to avoid unnecessary complications in the 
recurrences, we assume that all m > 0, some n^, say V, are zero, then the par-
ameter k becomes k' = k - V and the necessary modifications are obvious. 

Proposition 2.1: The multiparameter Stirling numbers of the first kind s(m;n9r) 
have the following representation 

s(m; n, v) = (-1)"-" m- n , E h U ~ , (2.2) 
n l ! ••• nk' ™ i = i j = i Xij 

where N = n± + ••• + nk and the summation extends over all ordered 71/-tuples of 
integers cc^- satisfying the relations 

k m 
xid > vi , i = 1, . .., k and £ £ x^ = m. 

Proof: We have 

Y(t, vt) = log(l + t) - Z (-D̂ *1 IT 
k = i 

= E C-D^"1 4r, i - 1, ..., fc. (2.3) 
k=vi

 K 

Forming the Cauchy product of series, we find, by virtue of (2.1), 

gn(t; r) ft**! = .11 ly(t, 2^)]n* 
~ i = 1 i. - 1 

= f: ( - D ^ - V E ft ff ^ , (2.4) 

where £ n a s t n e same meaning as above. Comparing (2.4) with (2.1), we get 
(2.2). m 

To obtain recurrence relations, we make use of the easily verified differ-
ence/differential equation, satisfied by the egf gn(t; v) in (2.1), namely, 

d k 
(1 +t)lign^' 5) " £ <-l>,V"1*'i"1flrs-.i<*; £>> (2-5) 
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where e^ = (0, . .., 0, 1, 0, ..., 0), i.e., a fc-component vector with zero com-
ponents except the ith component, which is equal to 1. 

Proposition 2.2: (m; n)-wise relations: The numbers s(m; n, r) satisfy the 
recurrence relation 

s(m + 1; n, r) + ms(m; n, r) 

k 
= Il(-^ri~1(^hi-1s(m-ri+l;n-eifr) (2.6) 

i = 1 

with initial conditions 
k 

s(0; 0, r) = 1, s(0; n9 r) = 0 whenever 2 vini > 0> 
i = l 

s(m; n9 v) = 0 i f m < r ' n . 

Proof: Equat ion (2 .5 ) by v i r t u e of (2 .1 ) can be w r i t t e n as 
oo ,m-\ 

(1 + t) £ s(m; n , r) , _ ^ 
m- r'n 

= £ L (-D^flOn; n - € i , v)±—y (2 .7 ) 
i = 1 m = r'n -ri 

Equating the coefficients of tm/m\ in (2.7) yields (2.6). Note that equation 
(2.6) for k - 1, T1 - 1 gives the well-known recurrence for the simple Stirling 
numbers of the first kind 

s(m + 1, n) = s(w, n - 1) - msim, n). (2.8) 

Proposition 2.3: (m; n, p)-wise relations: The numbers s(tf?; n, r) satisfy 

s(m; n, r+e^) = £ (-1)JP* — s{m- grii n- jei9 r), i = 1, . . ., k. (2.9) 
d'O j!(^)J 

Proof: We have, using also (2.3), 

<7n(t;r + €f) = -^r\y(t; r) + (-l)r^Tj[ ̂ M * . r,-)]"'; (2.10) 
5 = 1 

and using the binomial expansion 

we can write (2.10) as 

00
 s • iz ' i f ' — 1 ) v - f - " > - u - z 

22 s(m; n,r + e^-j- = £ ; Jj 8 ^ t i 'iSi^>—^—• (2-12) 

Hence, equating the coefficients of tm/ml9 we obtain (2.9), 
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Signless Multiparameter Stirling Numbers 

From the recurrence relation (2.6), it follows that the numbers s(m; n, r) 
are integers. Moreover, from the representation in (2.2), we conclude that 
s(m; n, r) is an integer with sign (-l)^-777, where N = n1 + ••• + nk. Therefore, 
if we multiply (2.6) by (-l)m~N+1

9 we obtain 

k 
\s(m+ 1; n, v)\ = m\s(m; n> £) | + 2 (m)r. _ ± \ s(m- vi + 1; n- ei9 r)\. (2.13) 

i = i l 

We call \s(m; n, r)| the signless (positive) multiparameter (^-parameter) 

Stirling Number of the First Kind, We will show 

Proposition 2.4: The egf of \s(m;n3 r)\ is given by 

« . .+m k 1 

m = r'n ^ = l ^ 
-log(l - t) - £ " - 1 1 * ~ 

i-i 3 
(2.14) 

Proof: From the difference equation (2.13), it is easily verified that the 
egf g*(t; r) satisfies the difference/differential equation 

(1 - t)-^hn_(t; r) - £ tP«-V*_ei(*; ?>. (2.15) 

which, in turn, yields (2.14). 
Alternatively, (2.14) leads to the representation of \s(m; n, r)\ as ob-

tained from (2.2). 

3. RATIOS OF MULTIPARAMETER STIRLING NUMBERS OF THE FIRST KIND 

We define, as a ratio of multiparameter Stirling numbers of the first kind 
with respect to argument m, the function 

s(m + 1; n, r) 
s(m; n, r) i? 1(777; n, v) = 7 ~ . (3.1) 

Ratios with respect to the arguments n i 9 v i 9 i = 1, ..., k, can also be defined 
The main reason for considering ratios with respect to 777 is seen from (1.1), 
which actually involves reciprocals of R19 when we are concerned with the par-
ameter of a logarithmic series distribution. 

Proposition 3.1: A recurrence relation for the ratio R1(m; n, r), independent 
of the multiparameter Stirling numbers of the first kind, is given by 

k (m)r _1
Iijnj m + l-r'n 

V—rVv II RAm - r, + 1 - i; n - ei9 r) 
RAm; n> r) + m = • (3.2) 

ij R1(m - i; n, r) 
i = l 
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for n > 1 and m > r'n, with the boundary conditions 

R1(m, 1, r) = -m (3.3) 
and 

k r • 71 * 

j = i ^Jj "*" 1 ; 

Proof: Using equation (3.1), it can easily be seen that 

rn- r'n s(m; n, r) 
O R^m - i; n, r) = , , . „ ~ (3.5) 
i = l s(r'n; n, r) * 

But equation (2.2), for m = r'n, miY = mi2 =••• = 7^ = rt , becomes 

(r'n)! 
s(r'n; n, r) = (-l)*'*"* — . (3.6) 

~. ~ k k 

n nt i n ^ 
£ = 1 i=l 

Consequently, equation (3.5) becomes 
m- r'n 

(-l)Z'2~s(r'n)\ n "R1(m - i; n, r) 

s(m; n, r) = (3.7) 

From equations (2.6) and (3.1) we have 

k 
E (-l)rj ~1(m) s(m - r. + 1; n - e •, r) 
. _ r • - l J ~ ~ <7 ~ 

i?1(772; W, P) + W = -^i- (3.8) 
s(m; n, r) 

and s u b s t i t u t i n g fo r s(m - r- + 1; n - e •, r) and s(m; n, r) from (3 .7 ) y i e l d s 
( 3 . 2 ) . By d e f i n i t i o n , 

s(r'n + 1; n, r) 

s(r'n; n, r) ' R-,(r'n; n, r) = j — . r — , (3 .9 ) 
1 '^ ~» ~> ~ ' a(vfm n. r} K ' 

and since equation (2.2), for m = r'n + 1, becomes 

(r'n + 1)1 k n . 
s(r'n + 1; n, r) = (-1)̂ +1-* £ °- , (3.10) 

n ^ i £"1^-1(rJ. + D j i ^ 
£ = 1 i * 1 

by using equation (3.6), the required formula (3.4) is easily obtained. 
The special case k = 1 yields 

Proposition 3.2: A recurrence relation for the ratio R\(m, n, r), independent 
of the generalized Stirling numbers of the first kind, is given by 
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rn(m) m +1- vn 

(m)~ n R^m - r + I - i9 n - l9 v) 
R (m9 ft, p) + m = (3 .11) 

m - vn 
II RAm - £ , ft, p) 

i = l x 

for n > 1 and m > rn, w i th 

i?1(772, 1 , P ) = -77? ( 3 . 1 2 ) 

n / N P f t (p f t + 1 ) / o i o N 
R1(rn9 ft, p) = ^ + 1 (3 .13) 

A l so , fo r k - 1, v = 1, we o b t a i n 

Proposition 3.3: A r e c u r r e n c e r e l a t i o n fo r t h e r a t i o R1(m, ft), independent of 
t h e s imple S t i r l i n g numbers of the f i r s t k i n d , i s g iven by 

m + 1 - n 

Tl R1(m - i9 n - 1) 

R1(m9 n) + m = — (3 .14) 
II i?x(m - iy ri) 

i = l 
for ft > 1 and 777 > ft, wi th 

#3.(777, 1) = -w (3 .15) 
i?1(w, ft) = -n(n + l ) / 2 (3 .16) 

Proposition 3,4: An a l t e r n a t i v e r e c u r r e n c e r e l a t i o n fo r t h e r a t i o R± (m, ft, p ) 
i s g iven by 

[R1(m- 1, n , r )+7W- l ] i ? 1 ( w - r , ft.-l, P ) 
RAm, n9 r) + m = •—= =—7 : r (3 .17) 

i v ' 5 J m - P + 1 R1(jn - 1, ft, P ) 

for ft > 1 and 772 > Pft. R1(m9 1, P ) and .^ (p f t , ft, r) a r e g iven by (3 .12) and 
( 3 . 1 3 ) , r e s p e c t i v e l y . 

Proof: Using e q u a t i o n (2 .6 ) wi th k = 1, we have 
( - l ) P " 1 ( 7 ? 2 ) p _ 1 S ( 7 7 ? - P + 1 , ft - 1 , P ) 

RAm, ft, P) +77? = T r (3 .18) 
l v 5 ' y S(777, ft, P ) 

from which equation (3.17) can easily be derived. 

Applying Proposition 3.4 with p = 1 gives 

Proposition 3.5: An alternative recurrence relation for the ratio i? (TTZ, ft) is 
given by 

[i? (777 - 1 , ft) + 777 - l ] i ? (777 - 1 , ft - 1 ) 
£ , (772, ft) + 777 = — 7 : r ( 3 . 1 9 ) 

1 R1(rn - 1 , ft) 

f o r ft > 1 a n d 77? > ft. 
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h. MULTIPARAMETER STIRLING NUMBERS OF THE SECOND KIND 

The multiparameter Stirling numbers of the second kind S(m; n, P ) are de 
fined by their egf 

* j.m k i 

/„(*; S) = E Sim; n, v)— = U — 
m~v'n '* ^ = 1 * * j - 0 "J • . 

(4.1) 

Taking fe = 1, V-^-v gives the generalized Stirling numbers of the second kind, 
5(77?, n, p) (Charalambides [6]; taking k = 1, P = 1 defines the simple Sterling 
numbers 5(77?, n). The following properties of 5(777; n, P ) can easily be estab-
lished (cf. §2). 

a) They have the representation 

777' *-̂  K Ui 1 
5(77?; n, P ) • , ' , S n n ^ T * (4.2) 

where the summation extends over all ordered N-twples (N = n1 + ••• + n^) of 
integers x^ satisfying 

k nt 

xid > vt , i = 1, .. ., k and J] £ a?̂ . = 77?. 

b) They satisfy the following recurrence relations, 

S(m + 1; n, p) = il75(m; n, P ) + £ L/!. ^(m - vt + 1; n - ei9 P ) (4.3) 

5(w; n, P + et) = XI ("1)J Z— S(rn - JP^ ; n - jei9 r), (4.4) 
~ j-o j!(^0 J 

with i n i t i a l conditions 

5(0 ; 0, P ) = 1, 5(0; n , P ) = 0 whenever J2 rini > ° 
and ~ ~ (4.5) 

5(TT?; n, P ) = 0 if TT? < p ' n . 

These follow from the d i f fe rence /d i f fe ren t ia l equation 

4:fnVi *0 = » /„(* , E) + E / „ . . , ( * ; r ) * " " 1 / ^ - 1)! (4.6) 
a ^ ~ ~ ~ £ = i ~ ~ 

It can easily be seen that the representation (4.2) provides the following com-
binatorial interpretation in terms of occupancy numbers. 

Proposition 4,1: The number of ways of placing 777 distinguishable balls into 
N = n1 + •. . + rik cells so that each cell of the i t h group of m cells contains 
at least vt balls for i = 1, ..., k is equal to n1l ... nk\S(m; n, P ) if the 
N cells are distinguishable, and is equal to S(m; n, p) if only cells belong-
ing to different groups are distinguishable (and cells in the same group are 
alike). 

If is easily concluded from Proposition 4.1, or from (4.3)-(4.5), that the 
numbers S(m; n, P) are nonnegative integers. 
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5. RATIOS OF MULTIPARAMETER STIRLING NUMBERS OF THE SECOND KIND 

We define, as a ratio of multiparameter Stirling numbers of the second kind 
with respect to argument m9 the function 

S{m + 1; n, r) 
Ri(jn\ n9 r) = — — , r — . (5.1) 

zv ' -' ~y S(m; n9 r) v J 

Working as for Proposition 3.1, we obtain 

Proposition 5.1: A recurrence relation for the ratio R2(m; ?k> V) > independent 
of the multiparameter Stirling numbers of the second kind, is given by 

k \Vj - \J 3 J m + l-v'n 

£ (rfn) -n R ^ m - rj + 1 ~ *> * ~ Zj> £) 
-/ = ! \i rJ:)r- ^ = l 

R2(m; n9 r) - N = - — , (5.2) 
II R2(m - i, n9 r) 

i = 1 
for n > 1 and m > r rn , with 

R2(m9 1, r) = k (5.3) 

and 
A nd R2(r'n; n, v) = (r'n + 1)£ , * n - (5.4) 

The s p e c i a l c a s e fc = 1 y i e l d s 

Proposition 5.2: A r e c u r r e n c e r e l a t i o n f o r t h e r a t i o R2(m, n9 r ) , i n d e p e n d e n t 
of t h e g e n e r a l i z e d S t i r l i n g n u m b e r s of t h e s e c o n d k i n d , i s g i v e n by 

( r n ) . ^ i?2(m - r + 1 - i , n - 1 , i?) 
2°! m + l-vn 

R0(m9 n9 r) - n = — ( 5 . 5 ) 

f l R2(rn - i , n9 r) 

f o r n > 1 and m > r n , w i t h 

fl2(m, 1 , r ) = 1 ( 5 . 6 ) 
a n d 

R2(rn9 n9 r) = n ( r n + l ) / ( r + 1 ) . ( 5 . 7 ) 

A l s o f o r k = 1 , 3? = 1 we o b t a i n 

Proposition 5.3: A r e c u r r e n c e r e l a t i o n f o r t h e r a t i o R2(m9 n), i n d e p e n d e n t of 
t h e u s u a l S t i r l i n g n u m b e r s of t h e s e c o n d k i n d , i s g i v e n by 

m + l-n 
II R2(m - i , n - 1) 

£ = 1 
#o(Wi n) - n = , ( 5 . 8 ) 

1984] n #2(^ - >̂ n> 127 



MULTIPARAMETER STIRLING AND C-NUMBERS: RECURRENCES AND APPLICATIONS 

for n > 1 and m > n, with 

R2{my 1) = 1 (5.9) 
and 

R2(n, n) = n(n + l)/2. (5.10) 

Proposition 5.4: An alternative recurrence relation for the ratio R2(m, n, r) 
is given by 

^ [R2(m - 1, n, p) - n]Z?2(?w. - P, n - 1, P ) 
R9(m, n, p) - n = —: — 7 , (5,11) 
2 m - v + 1 R2(m - I, n, r) v y 

for n > 1 and m > rn. 

Applying Proposition 5.4 with p = 1 gives 

Proposition 5.5: An alternative recurrence relation for the ratio R2(m, ri), is 
given by 

[Rz(m - 1, n) - n]R2(m - 1, n - 1) 
^ ( m ' w ) " " = fl2(m - 1, n) » (5'12) 

for n > 1 and w > n. 

The last relation was also derived by Berg [1]. 

6. MULTIPARAMETER ^-NUMBERS 

The multiparameter C-numbers, CQn; n, s, P ) 9 are defined by their egf 

k JZL . -t-m «- 1 „ <- - /q.\ 

W S> ?) = E C(m; n, e, P)-^ = n " V K1 + *) * " E ( I) 
^ - 1 

J=0 
(6.1) 

where the ŝ  ^ 0, £ = 1, . . ., /c, are any real numbers. 
Taking fc = 1 gives the generalized C-numbers (Charalambides [6]) and k = 1, 

Pi = 1 defines the simple (7-numbers (Cacoullos and Charalambides [5], Charalam-
bides [8]. 

The following properties of C(m; n, §, r) are easily verified. 

a) They have the representation 

C(m; n, g, r) - ml £ ft n (** ) , (6.2) 

where the summation extends over all ordered #-tuples (N = n1 + ••• + nk) of 
integers x^ satisfying 

k ni 
xio > Ti > *- = l> '' ' > k and E E %ij = rn. 

i = l j = 1 

b) They satisfy the following recurrence relations, 

C(m + 1; n, s, P ) = (sfn - m)C(m; n, s9 P ) 
~ * I m \ ( 6 ' 3 ) 

+ E [r, _ 1 ) ( s t ) ^ . C{m-vi + 1; n - g i 5 g, P ) 
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and 

C(m; n, s, v + g i) = £ ( - i ) ^ _ ^ _ / ^ V ^ ( ^ ̂  . n - j € i , g, P) , (6.4) 
j = 0 ^• V i / • 

with initial conditions 

C(0; 0, s, v) = 1, C(w; n, s, p) = 0 when m < rrn. 

They are obtained from the difference/differential equation 

(1 + t )3F f Pa ( t ; s* r) = $'*%&> $> & + ? (r. - 1)! ̂ ""^a-g*^ 6, £)-" (6.5) 

The representation (6.2) leads us to the following interpretation of the 
C(m; n, s, v)-numbers in the framework of coupon-collecting problems. 

Consider an urn containing k groups (sets) of distinguishable balls; the 
ith group consists of s^n^ balls and is divided into equal subgroups (subsets) 
of S-i balls each bearing the numbers 1, . .., n^; moreover, suppose the balls of 
the k groups are distinguished by different colors so that each ball in the urn 
is distinguished by its color and number. Now it is easily seen from (6.2) that 

Proposition 6.1: The number of ways of selecting m balls out of an urn with 

k 

i = l 

distinguishable balls, divided into k groups by color and number as above into 
ni subsets of size si within the ith subgroup, so that each number 1, ..., ni 
of the i t h subgroup (color) appears at least r^ times is equal to 

n1\ . . . n \ k-
•C(m; n, s, r) . (6.6) 

Here it was assumed that s^ is a positive integer. If s^ is a negative 
integer, say s. - -s?, then 

ri ri (_8 i ) = n ri ( : s ? ) = n fi (-DXiJ Is' +' ** ~ l) (6.7) 
. i = l j ' s l r i i / i = 1 3 = 1 \ xij I i = 1 j = 1 \ ^ V / 

and from (6.2) it can be concluded that the sign of C(m; n, s, r) is the same 
as (~l)m . Furthermore, we may deduce 

Proposition 6.2: The number of ways of distributing m (m^r'n) nondistinguish-
able balls into s*'n cells, divided into k groups of cells with s^n-i cells in 
the i t h group and ni subgroups each of si cells in the i t h group, so that each 
subgroup of the {. group contains at least r- balls is equal to 

n ! .. . n, ! 
1

 m{ \C(m; n, -g*, r) | . (6.8) 

As an indication of the applicability of the multiparameter C-numbers in 
occupancy problems, we refer to a problem posed by Sobel et al. [12, p. 52]. 
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Signless Multiparameter ff-Numbers 

From the basic recurrence relation (6.3) or from the last two propositions, 
we conclude that: 

a) for Si > 0 an integer, the numbers C(m; n, s, r) are nonnegative inte-
gers; they are positive for v rn ̂  m ̂  srn; otherwise zero; 

b) for s^ < 0 an integer, the numbers C(m; n, s, r) are integers having the 
sign of (~l)m . 

Thus, as in the case of the Stirling numbers of the first kind, Riordan [10], 
the positive numbers 

\c(m; n, -s*, r)\ = (-lfc(m; n, -s*, r) (6.9) 

will be called signless multiparameter C-numbers. 
It can easily be verified that 

Proposition 6.3: The egf of the signless multiparameter C-numbers 

\C(m; n, -§, r) | , 

s^ > 0, £ = 1, ..., k, is given by 

k 
<P*(t; -s, r) = O ITTT 

^ = 1 ^ 
(i - tySi - r£ ( - 1 ) J ' ( / ' )^ | l- (6-1Q) 

Remark; It should be observed that this is exactly the egf required for the 
treatment of the mvue problem in the negative binomial case when the probabil-
ity function of the ith sample is 

^ - *«> - who(" * :;r Y"'1 - ̂  
== (-l)Xii " S M 9 ^ ( 1 - d)Si (6.11) 

\xij I 
with 

j' = o 

7. RATIOS OF MULTIPARAMETER C-NUMBERS 

0(0, 2-) = (1 - 9)"Si - £ (-DJ"( f*W, i = 1, ..., fc. (6.12) 
i = 0 W / 

We define, as a ratio of multiparameter C-numbers with respect to argument 
777, the function 

Ro(m; n, s, r) ^/ ^ N (7.1) 
3V ' ~ ~ ~y C(m; n, s, r) 

Proposition 7,1: A recurrence relation for the ratio R3(m, n, s, r) , indepen-
dent of the multiparameter C-numbers, is given by 

130 [May 



MULTIPARAMETER STIRLING AND C-NUMBERS: RECURRENCES AND APPLICATIONS 

R3(m; n9 s9. r) + m - s'n 

k \p. _ l)^SJ^rj U3 m + l-r'n 
£ — " 7T^ II Rz(m - r. + 1 - i, n - e-9 s, r) 

<?' = 1 (r'n)Pj (̂ ) i = i J J 

m- v'n 
II RAm - i , n9 s9 r) 

i = 1 i ~ ~ ~ 

for n > 1 and m > rrn9 with 

(7.2) 

(7.3) 
and i?3(m, 1, s, r) = s - ??? 

R3(rTn; n, s, r) = (r'n + 1) 2* —7 +~T)—* (7.4) 

Proposition 7.2: A recurrence relation for the ratio R$(rn9 n9 s9 r)9 indepen-
dent of the generalized C-numbers (case k = 1), is given by 

II R3(m-r+l-i, n - 1 , s9 r) 
(rnh(t) 

R3(m9 n9 s, r) +m - sn = — : , ( 7 . 5 ) 
m-vn 

0 RAm - i9 n9 s, r) 
i = i d 

for n > 1 and m > vn9 w i th 
R3(m9 1, s , r ) = s - m ( 7 . 6 ) 

and 
R3(rn9 n9 s9 r) = n ( r n + 1 ) ( s - r ) / ( r + 1 ) . ( 7 . 7 ) 

Proposition 7.3: A r e c u r r e n c e r e l a t i o n for t h e r a t i o R3(m> n9 s) 9 independent 
of t he u s u a l C-numbers (case v = 1 ) , i s g iven by 

m + l-n 
II R3(m - i9 n - 1, s) 

R3(m9 n9 s) + m - sn = - I l i ^ — = , ( 7 . 8 ) 
I ! R3(m - i9 n9 s) 

i = l 
fo r n > 1 and m > n , w i th 

i?3(m, 1, s ) = s - m ( 7 - 9 ) 
and 

i?3(n5 n , s) = (s - l)n(n + l ) / 2 . (7 .10) 

Proposition 7.4: An a l t e r n a t i v e r e c u r r e n c e r e l a t i o n for t h e r a t i o R3(m, n9 s9 r) 
i s g iven by 

R3{m9 n9 s9 r)+m-sn 

m [R3(m- 1, n , s9 r) +m- sn- l]R3(m- r, n - 1 , s9 r) 

m-r+l R(m- l9 n9 s9 r) 
(7 .11) 

fo r n > 1 and 777 > m . 
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Proposition 7.5: An alternative recurrence relation for the ratio R3(m9 n, s) 
is given by 

[R3(m- 1, n, s) + m- sn- l]R3(m- 1, n- 1, s) 
S3(m, n, s ) + „ - s n = ^ i?3 ( w- l, „, a) : ' (7"12) 

for n > 1 and 77? > n. 

8. RELATIONS BETWEEN THE STIRLING AND ONUMBERS 

It was observed in Cacoullos and Charalambides [5] that 

lim s-mC(m, n, s) = S(m9 n); (8.1) 
Si -> ±00 

i.e., the C-numbers can be approximated by the Stirling numbers of the second 
kind for large s, a fact that reflects the corresponding well-known convergence 
of the binomial to the Poisson (s ->- °°, p -* 0, i.e., 0 = p/q ->- 0 and, hence, sp 
or 30 converges to the Poisson parameter A). The above property extends to the 
case of multiparameter Stirling numbers of the second kind and multiparameter 
C-numbers; namely, 

lim slmC(m; n, s, r) = S(m; n, r), i = 1, ..., k. (8.2) 
S^ ->• +oo ~ ~ ~ ~ ~ 

This can be verified by using the corresponding representations (4.2) and 
(6.2) of these numbers and noting that 

l im s~k ( ? ) = l/kl. (8 .3 ) 
Si -> ±oo \ K J 

A relationship between the signless multiparameter Stirling numbers of the 
first kind and the multiparameter C-numbers reflects the limiting relationship 
between the negative binomial and the logarithmic series distributions: 

lim s:N \C(m; n, -g, r)| = \s(m; n> £)I> N = ni + *•• + nk' (8.4) 

This can be seen, e.g., by showing that the egf of the s}N \C(m, n, -s, £) | -
numbers converge to the egf of the |S(TT?; n, r)|-numbers; i.e., 

iim -^n-Vfa - t)"Si - "E (-DJ'(7£) t-7 

A^T[-log(l - t) - £ \ (8.5) 

For this, note that 

-(-l)J'(~f)tJ' — r ; ^ . (8 .6 ) 
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